一种基于复合梯度向量的人脸识别方法

    公开(公告)号:CN102324022A

    公开(公告)日:2012-01-18

    申请号:CN201110259963.X

    申请日:2011-09-05

    Abstract: 本发明属于模式识别技术领域,具体涉及一种基于复合梯度向量的人脸识别方法,该方法首先在定位后的人脸图像中标定目标区域,并在目标区域内划分特征子区域,然后以特征子区域的边缘奇异点作为向量的起点和终点进行正交采样得到基向量,将目标区域内所有基向量组建向量簇,通过对基向量的多维复合得到向量簇内所有极大梯度向量,最后以极大梯度向量作为元素组建复合梯度向量并统计复合梯度向量的维度和梯度信息,将复合梯度向量、复合梯度向量维度和梯度进行人脸库对比,识别出人脸身份。本发明提供的人脸识别方法比其它人脸识别方法具有更强的环境适应性和特征提取能力,在光照强度变化、多姿态、多表情条件下,具有较高识别性能,可用于生物特征识别领域中大范围复杂环境下的人脸识别。

    一种基于复合梯度向量的人脸识别方法

    公开(公告)号:CN102324022B

    公开(公告)日:2013-03-20

    申请号:CN201110259963.X

    申请日:2011-09-05

    Abstract: 本发明属于模式识别技术领域,具体涉及一种基于复合梯度向量的人脸识别方法,该方法首先在定位后的人脸图像中标定目标区域,并在目标区域内划分特征子区域,然后以特征子区域的边缘奇异点作为向量的起点和终点进行正交采样得到基向量,将目标区域内所有基向量组建向量簇,通过对基向量的多维复合得到向量簇内所有极大梯度向量,最后以极大梯度向量作为元素组建复合梯度向量并统计复合梯度向量的维度和梯度信息,将复合梯度向量、复合梯度向量维度和梯度进行人脸库对比,识别出人脸身份,本发明提供的人脸识别方法比其它人脸识别方法具有更强的环境适应性和特征提取能力,在光照强度变化、多姿态、多表情条件下,具有较高识别性能,可用于生物特征识别领域中大范围复杂环境下的人脸识别。

Patent Agency Ranking