-
公开(公告)号:CN115034283A
公开(公告)日:2022-09-09
申请号:CN202210385599.X
申请日:2022-04-13
Applicant: 辽宁工程技术大学
Abstract: 本发明公开了一种基于深度学习的矢量数据分区纠正方法,包括制作用于深度学习的U2‑Net模型的样本集;选取训练的最优模型权重,输入城市与农村遥感影像进行道路提取;将边缘提取获取的线段进行有序排列;基于矢量线的道路特征集提取;依照城市与农村道路特有属性,对城市道路与农村道路进行自动划分;城市道路矢量纠正;农村道路矢量纠正;输出纠正后的城市与农村道路矢量数据。本发明的基于深度学习的矢量数据分区纠正方法在纠正矢量过程中,可对城市道路矢量数据与农村道路矢量自动进行区分,并使用相应算法进行解决;提高城市道路矢量数据纠正精度,在农村区域建立矢量数据纠正模型,完成农村道路矢量数据纠正。
-
公开(公告)号:CN115034283B
公开(公告)日:2024-10-29
申请号:CN202210385599.X
申请日:2022-04-13
Applicant: 辽宁工程技术大学
IPC: G06V20/58 , G06N3/0464 , G06N3/08 , G06V10/764 , G06V10/82
Abstract: 本发明公开了一种基于深度学习的矢量数据分区纠正方法,包括制作用于深度学习的U2‑Net模型的样本集;选取训练的最优模型权重,输入城市与农村遥感影像进行道路提取;将边缘提取获取的线段进行有序排列;基于矢量线的道路特征集提取;依照城市与农村道路特有属性,对城市道路与农村道路进行自动划分;城市道路矢量纠正;农村道路矢量纠正;输出纠正后的城市与农村道路矢量数据。本发明的基于深度学习的矢量数据分区纠正方法在纠正矢量过程中,可对城市道路矢量数据与农村道路矢量自动进行区分,并使用相应算法进行解决;提高城市道路矢量数据纠正精度,在农村区域建立矢量数据纠正模型,完成农村道路矢量数据纠正。
-