利用机器训练的异常检测的COPD分类

    公开(公告)号:CN111563523B

    公开(公告)日:2024-03-26

    申请号:CN202010092805.9

    申请日:2020-02-14

    Abstract: 对于医学成像系统中的COPD分类,机器学习用于学习对患者是否患有COPD进行分类。图像到图像网络深度学习指示各种或任何类型的COPD的空间特征。肺部功能测试可以用作训练所述特征和从空间特征的分类的基础事实。由于肺部功能测试结果和对应的CT扫描的可用性高,因此有很多训练样本。然后,来自图像到图像网络的经学习的特征的值用于创建COPD级别的空间分布,从而提供对区分COPD的类型有用的信息,而无需在训练中对COPD的空间分布的基础事实注释。

    利用机器训练的异常检测的COPD分类

    公开(公告)号:CN111563523A

    公开(公告)日:2020-08-21

    申请号:CN202010092805.9

    申请日:2020-02-14

    Abstract: 对于医学成像系统中的COPD分类,机器学习用于学习对患者是否患有COPD进行分类。图像到图像网络深度学习指示各种或任何类型的COPD的空间特征。肺部功能测试可以用作训练所述特征和从空间特征的分类的基础事实。由于肺部功能测试结果和对应的CT扫描的可用性高,因此有很多训练样本。然后,来自图像到图像网络的经学习的特征的值用于创建COPD级别的空间分布,从而提供对区分COPD的类型有用的信息,而无需在训练中对COPD的空间分布的基础事实注释。

Patent Agency Ranking