-
公开(公告)号:CN114758226A
公开(公告)日:2022-07-15
申请号:CN202210273865.X
申请日:2022-03-19
Applicant: 西安电子科技大学
IPC: G06V20/10 , G06V10/26 , G06V10/28 , G06V10/764 , G06V10/772 , G06K9/62
Abstract: 本发明提出了一种两阶段决策引导双字典构建的高光谱图像异常检测方法,主要解决现有方法中潜在异常字典纯度低、检测效果不佳的问题。包括:对高光谱图像进行超像素分割,根据超像素设计内外窗进行显著性检测,并对检测结果进行后处理得到粗糙二值图;搭建背景估计网络并训练和推理,以推理误差进行背景建模,计算每个像素的马氏距离作为异常判别标准,对计算结果进行后处理得到精细二值图;以粗糙二值图、精细二值图及超像素共同构建背景字典和潜在异常字典;构建基于双字典的低秩和稀疏表示模型并进行优化求解,得到最终检测结果。本发明能够获取纯净的潜在异常字典,利于更好地描述异常特性,有效提升了高光谱图像异常检测效果。
-
公开(公告)号:CN114758226B
公开(公告)日:2024-09-27
申请号:CN202210273865.X
申请日:2022-03-19
Applicant: 西安电子科技大学
IPC: G06V20/10 , G06V10/26 , G06V10/28 , G06V10/764 , G06V10/772 , G06V10/82
Abstract: 本发明提出了一种两阶段决策引导双字典构建的高光谱图像异常检测方法,主要解决现有方法中潜在异常字典纯度低、检测效果不佳的问题。包括:对高光谱图像进行超像素分割,根据超像素设计内外窗进行显著性检测,并对检测结果进行后处理得到粗糙二值图;搭建背景估计网络并训练和推理,以推理误差进行背景建模,计算每个像素的马氏距离作为异常判别标准,对计算结果进行后处理得到精细二值图;以粗糙二值图、精细二值图及超像素共同构建背景字典和潜在异常字典;构建基于双字典的低秩和稀疏表示模型并进行优化求解,得到最终检测结果。本发明能够获取纯净的潜在异常字典,利于更好地描述异常特性,有效提升了高光谱图像异常检测效果。
-