-
公开(公告)号:CN108510465A
公开(公告)日:2018-09-07
申请号:CN201810086733.X
申请日:2018-01-30
Applicant: 西安电子科技大学
Abstract: 本发明提出了一种基于一致性约束非负稀疏表示的多聚焦图像融合方法,用于解决现有技术中存在的融合图像清晰度低和融合复杂度较高的技术问题。其实现步骤是:输入经过配准的源图像;构建源图像的向量化矩阵;构建基于一致性约束的非负稀疏表示的稀疏编码模型;利用具有自适应惩罚因子的线性迭代方向算法对一致性约束的非负稀疏表示的稀疏编码模型进行求解,得到源图像的非负稀疏表示系数;利用源图像的非负稀疏表示系数构建图像块级标记矩阵;利用图像块级标记矩阵构建融合图像。本发明能够提高融合图像的清晰度的同时降低融合复杂度,可用于环境监测,清晰图像重建等领域。
-
公开(公告)号:CN108510465B
公开(公告)日:2019-12-24
申请号:CN201810086733.X
申请日:2018-01-30
Applicant: 西安电子科技大学
Abstract: 本发明提出了一种基于一致性约束非负稀疏表示的多聚焦图像融合方法,用于解决现有技术中存在的融合图像清晰度低和融合复杂度较高的技术问题。其实现步骤是:输入经过配准的源图像;构建源图像的向量化矩阵;构建基于一致性约束的非负稀疏表示的稀疏编码模型;利用具有自适应惩罚因子的线性迭代方向算法对一致性约束的非负稀疏表示的稀疏编码模型进行求解,得到源图像的非负稀疏表示系数;利用源图像的非负稀疏表示系数构建图像块级标记矩阵;利用图像块级标记矩阵构建融合图像。本发明能够提高融合图像的清晰度的同时降低融合复杂度,可用于环境监测,清晰图像重建等领域。
-