-
公开(公告)号:CN116471154A
公开(公告)日:2023-07-21
申请号:CN202310584967.8
申请日:2023-05-23
Applicant: 西安电子科技大学
IPC: H04L27/00 , G06N3/0464 , G06N3/048 , G06F18/241 , G06F18/25 , G06F18/213
Abstract: 本发明提出了一种基于多域混合注意力的调制信号识别方法,主要解决现有方法提取特征不完备、在低信噪比下识别准确率较低的问题。方案包括:1)对离散复信号进行预处理,得到I/Q/A/P/F序列;2)构建空间特征提取模块提取序列的幅度等波形特征;3)利用离散余弦变换得到频域特征,并通过频域注意力模块提取不同频率分量的特征信息;4)构建时间特征提取模块挖掘空间特征和频域特征间的依赖关系并进行深层融合,获得调制信号的时间特征;5)将时间特征输入至分类器,经过分类器输出调制信号类别的识别结果。本发明能够获取不同域特征间的关联、互补性,增强模型稳定性及可靠性,有效提升低信噪比下各调制信号的识别准确率。
-
公开(公告)号:CN116471154B
公开(公告)日:2025-01-03
申请号:CN202310584967.8
申请日:2023-05-23
Applicant: 西安电子科技大学
IPC: H04L27/00 , G06N3/0464 , G06N3/048 , G06F18/241 , G06F18/25 , G06F18/213
Abstract: 本发明提出了一种基于多域混合注意力的调制信号识别方法,主要解决现有方法提取特征不完备、在低信噪比下识别准确率较低的问题。方案包括:1)对离散复信号进行预处理,得到I/Q/A/P/F序列;2)构建空间特征提取模块提取序列的幅度等波形特征;3)利用离散余弦变换得到频域特征,并通过频域注意力模块提取不同频率分量的特征信息;4)构建时间特征提取模块挖掘空间特征和频域特征间的依赖关系并进行深层融合,获得调制信号的时间特征;5)将时间特征输入至分类器,经过分类器输出调制信号类别的识别结果。本发明能够获取不同域特征间的关联、互补性,增强模型稳定性及可靠性,有效提升低信噪比下各调制信号的识别准确率。
-