-
公开(公告)号:CN108985360B
公开(公告)日:2022-04-08
申请号:CN201810698251.X
申请日:2018-06-29
Applicant: 西安电子科技大学
IPC: G06K9/62 , G06V10/774 , G06V10/764 , G06V10/762
Abstract: 本发明公开一种基于扩展形态学与主动学习的高光谱图像分类方法,解决现有技术不能充分挖掘高光谱图像空间信息,导致分类精度低的问题。其步骤为:1)输入高光谱图像数据;2)对数据降维,提取光谱特征,并通过形态学剖面变换,得到空间特征;3)融合空谱特征,划分训练与测试样本集;4)利用训练样本集进行SVM分类;5)主动学习循环,由MCLU准则和AP聚类选取样本标记,更新训练与测试样本集;6)利用新的训练样本集进行SVM分类,直到训练样本数量达到预设数量时停止,得到最终分类结果。本发明将多结构元素的形态学特征与主动学习相结合,充分利用空谱信息,在小样本前提下提高了分类精度。
-
公开(公告)号:CN108985360A
公开(公告)日:2018-12-11
申请号:CN201810698251.X
申请日:2018-06-29
Applicant: 西安电子科技大学
IPC: G06K9/62
Abstract: 本发明公开一种基于扩展形态学与主动学习的高光谱图像分类方法,解决现有技术不能充分挖掘高光谱图像空间信息,导致分类精度低的问题。其步骤为:1)输入高光谱图像数据;2)对数据降维,提取光谱特征,并通过形态学剖面变换,得到空间特征;3)融合空谱特征,划分训练与测试样本集;4)利用训练样本集进行SVM分类;5)主动学习循环,由MCLU准则和AP聚类选取样本标记,更新训练与测试样本集;6)利用新的训练样本集进行SVM分类,直到训练样本数量达到预设数量时停止,得到最终分类结果。本发明将多结构元素的形态学特征与主动学习相结合,充分利用空谱信息,在小样本前提下提高了分类精度。
-