一种基于用户个性化特征的社交网络用户行为预测方法

    公开(公告)号:CN111159569A

    公开(公告)日:2020-05-15

    申请号:CN201911283164.9

    申请日:2019-12-13

    Abstract: 本发明公开了一种基于用户个性化特征的社交网络用户行为预测方法,首先基于若干社交网络用户的多维行为属性数据,构建不同类别的用户标记向量;对社交网络用户进行分类,划分为不同归属类别的用户,并对其行为进行行为特征向量转化,得到向量化后的用户行为;将向量化用户行为按时序排列,采用长短时记忆神经网络进行预测,所需预测结果;本发明对社交网络用户进行分类定义,对社交网络用户的类别及行为属性进行区分;对每一归属类别的用户行为的时序数据进行排序,通过对该类别用户行为数据的学习迭代来进行用户行为预测,降低了对预测过程中参数化的假设;充分考虑了社交网络用户在时序行为上的动态过程,提高了预测结果的真实性。

Patent Agency Ranking