一种基于深度相关性匹配的局部引文推荐系统及方法

    公开(公告)号:CN111581401B

    公开(公告)日:2023-04-07

    申请号:CN202010373507.7

    申请日:2020-05-06

    Abstract: 本发明公开了一种基于深度相关性匹配的局部引文推荐系统及方法,使用预训练的多层语言模型对单词进行嵌入表示,获取了单词更加语境化的表示,解决了以往方法单词嵌入表示不够丰富的问题。本发明解决了深度语义匹配方法中存在语义模糊的问题。并对引文上下文和候选论文内容建立交互矩阵学习,解决了文本长度差异较大导致传统模型推荐效果较大的影响。本发明创新性的提出了构建作者网络,解决了传统局部引文推荐方法中使用特征单一的问题,将最具影响力和相关性的作者信息融入到模型中,充分的将作者特征与相关性特征相结合。本发明使用相同的MLP网络对每一个相关性特征进行学习,有效了减少了神经网络参数,减少的模型过拟合的可能性。

    一种基于深度相关性匹配的局部引文推荐系统及方法

    公开(公告)号:CN111581401A

    公开(公告)日:2020-08-25

    申请号:CN202010373507.7

    申请日:2020-05-06

    Abstract: 本发明公开了一种基于深度相关性匹配的局部引文推荐系统及方法,使用预训练的多层语言模型对单词进行嵌入表示,获取了单词更加语境化的表示,解决了以往方法单词嵌入表示不够丰富的问题。本发明解决了深度语义匹配方法中存在语义模糊的问题。并对引文上下文和候选论文内容建立交互矩阵学习,解决了文本长度差异较大导致传统模型推荐效果较大的影响。本发明创新性的提出了构建作者网络,解决了传统局部引文推荐方法中使用特征单一的问题,将最具影响力和相关性的作者信息融入到模型中,充分的将作者特征与相关性特征相结合。本发明使用相同的MLP网络对每一个相关性特征进行学习,有效了减少了神经网络参数,减少的模型过拟合的可能性。

Patent Agency Ranking