-
公开(公告)号:CN117876383A
公开(公告)日:2024-04-12
申请号:CN202410284089.2
申请日:2024-03-13
Applicant: 西南林业大学
IPC: G06T7/00 , G06N3/0464 , G06N3/084 , G06T7/73 , G06V10/44 , G06V10/52 , G06V10/764 , G06V10/82
Abstract: 本申请公开了一种基于yolov5l的公路表面条状裂缝检测方法,涉及图像识别领域,该方法包括:基于表面裂缝图像构建表面条状裂缝样本集;基于所述表面条状裂缝样本集对预设网络进行训练,获取裂缝检测模型;基于所述裂缝检测模型对采集到的表面图像进行检测,确定所述表面图像中的目标裂缝,所以,有效解决了相关技术中对裂缝的形状和类型有一定的假设和限制,同时需要处理图像中的噪声、阴影、纹理等干扰因素,导致表面裂缝识别的通用性以及准确性不佳的技术问题,实现了提高表面裂缝特征提取精度,统一表面病害检测标准的技术效果。
-
公开(公告)号:CN117876383B
公开(公告)日:2024-06-07
申请号:CN202410284089.2
申请日:2024-03-13
Applicant: 西南林业大学
IPC: G06T7/00 , G06N3/0464 , G06N3/084 , G06T7/73 , G06V10/44 , G06V10/52 , G06V10/764 , G06V10/82
Abstract: 本申请公开了一种基于yolov5l的公路表面条状裂缝检测方法,涉及图像识别领域,该方法包括:基于表面裂缝图像构建表面条状裂缝样本集;基于所述表面条状裂缝样本集对预设网络进行训练,获取裂缝检测模型;基于所述裂缝检测模型对采集到的表面图像进行检测,确定所述表面图像中的目标裂缝,所以,有效解决了相关技术中对裂缝的形状和类型有一定的假设和限制,同时需要处理图像中的噪声、阴影、纹理等干扰因素,导致表面裂缝识别的通用性以及准确性不佳的技术问题,实现了提高表面裂缝特征提取精度,统一表面病害检测标准的技术效果。
-