-
公开(公告)号:CN110456808B
公开(公告)日:2022-04-01
申请号:CN201910637003.9
申请日:2019-07-15
IPC: G05D1/08
Abstract: 本发明涉及一种面向目标抓捕的空间机器人快速非奇异终端滑模控制方法,用于解决现有空间机器人目标抓捕控制方法实用性差的技术问题。该方法首先将空间机器人目标抓捕后组合体动力学模型进行分解,得到姿态子系统动力学模型;然后基于姿态跟踪误差,设计快速非奇异终端滑模面;进一步基于滑模面设计自适应控制器,从而保证系统状态快速收敛至滑模面;考虑系统动力学不确定性和未知外部扰动,设计自适应更新律实现对系统不确定性和外部扰动的集总估计补偿,便于工程实现。本发明在保证空间机器人系统在抓捕过程中的稳定控制基础上,提高了系统响应速度,缩短了抓捕后的系统稳定时间,同时针对不确定性与外部扰动设计了自适应补偿环节,实用性好。
-
公开(公告)号:CN110405758A
公开(公告)日:2019-11-05
申请号:CN201910637005.8
申请日:2019-07-15
IPC: B25J9/16
Abstract: 本发明涉及一种基于非奇异终端滑模技术的空间机器人目标抓捕控制方法,用于解决现有空间机器人目标抓捕控制方法实用性差的技术问题。该方法首先将空间机器人目标抓捕后组合体动力学模型进行分解,得到姿态子系统动力学模型,并基于该模型构造面向控制的状态方程;然后设计非奇异终端滑模面,并基于滑模面设计自适应控制器,从而保证系统状态的有效时间收敛;考虑系统动力学不确定性和未知外部扰动,设计自适应更新律实现对系统不确定性和外部扰动的集总估计补偿,便于工程实现。本发明在保证空间机器人系统在抓捕过程中的稳定控制基础上,实现了高精度的姿态跟踪控制,同时针对不确定性与外部扰动设计了自适应补偿环节,实用性好。
-
公开(公告)号:CN110456808A
公开(公告)日:2019-11-15
申请号:CN201910637003.9
申请日:2019-07-15
IPC: G05D1/08
Abstract: 本发明涉及一种面向目标抓捕的空间机器人快速非奇异终端滑模控制方法,用于解决现有空间机器人目标抓捕控制方法实用性差的技术问题。该方法首先将空间机器人目标抓捕后组合体动力学模型进行分解,得到姿态子系统动力学模型;然后基于姿态跟踪误差,设计快速非奇异终端滑模面;进一步基于滑模面设计自适应控制器,从而保证系统状态快速收敛至滑模面;考虑系统动力学不确定性和未知外部扰动,设计自适应更新律实现对系统不确定性和外部扰动的集总估计补偿,便于工程实现。本发明在保证空间机器人系统在抓捕过程中的稳定控制基础上,提高了系统响应速度,缩短了抓捕后的系统稳定时间,同时针对不确定性与外部扰动设计了自适应补偿环节,实用性好。
-
公开(公告)号:CN110405758B
公开(公告)日:2022-08-09
申请号:CN201910637005.8
申请日:2019-07-15
IPC: B25J9/16
Abstract: 本发明涉及一种基于非奇异终端滑模技术的空间机器人目标抓捕控制方法,用于解决现有空间机器人目标抓捕控制方法实用性差的技术问题。该方法首先将空间机器人目标抓捕后组合体动力学模型进行分解,得到姿态子系统动力学模型,并基于该模型构造面向控制的状态方程;然后设计非奇异终端滑模面,并基于滑模面设计自适应控制器,从而保证系统状态的有效时间收敛;考虑系统动力学不确定性和未知外部扰动,设计自适应更新律实现对系统不确定性和外部扰动的集总估计补偿,便于工程实现。本发明在保证空间机器人系统在抓捕过程中的稳定控制基础上,实现了高精度的姿态跟踪控制,同时针对不确定性与外部扰动设计了自适应补偿环节,实用性好。
-
公开(公告)号:CN107526369B
公开(公告)日:2020-05-12
申请号:CN201710964946.3
申请日:2017-10-17
Applicant: 西北工业大学 , 西北工业大学深圳研究院
IPC: G05D1/10
Abstract: 本发明公开了一种多推进器的遥控式水下机器人轨迹跟踪控制方法,用于解决现有水下机器人控制方法实用性差的技术问题。技术方案是基于ROV体坐标系的运动方程建立ROV的两个基本坐标系分别为固定坐标系和运动坐标系,选取的坐标系有:地心惯性坐标Oexiyizi、地球坐标系Oexeyeze、地理坐标系Oxnynzn和ROV体坐标系Oxbybzb,通过定义跟踪误差,取控制律,实现水下机器人控制。本发明利用轨迹跟踪控制器,不需要准确的数学模型,具有结构简单、参数整定方便、易于工业实现和适用面广等优点,通过调整参数使系统得到满意的控制效果。
-
公开(公告)号:CN107390531B
公开(公告)日:2019-10-18
申请号:CN201710789197.5
申请日:2017-09-05
Applicant: 西北工业大学 , 西北工业大学深圳研究院
IPC: G05B13/04
Abstract: 本发明公开了一种参数学习有限时间收敛的高超声速飞行器控制方法,用于解决现有高超声速飞行器控制方法实用性差的技术问题。技术方案是通过构造一阶滤波器与辅助信号获取建模误差信息,结合跟踪误差与辅助信号设计神经网络自适应律,针对高超声速飞行器模型中的未知非线性函数估计设计了RBF神经网络方法,将有限时间学习的思想引入神经网络权重更新律设计中,相比传统的神经网络方法,本发明通过构造一阶滤波器与辅助信号将建模误差信息引入权重更新律,能保证参数学习误差有限时间收敛,从而保证学习的快速性。由于采用神经网络学习对不确定性进行估计,无需进行模型线性参数化表达,可实现不确定高超声速飞行器控制,便于实际工程应用。
-
公开(公告)号:CN107608217A
公开(公告)日:2018-01-19
申请号:CN201711073629.9
申请日:2017-11-05
Applicant: 西北工业大学 , 西北工业大学深圳研究院 , 上海航天控制技术研究所
IPC: G05B13/04
Abstract: 本发明公开了一种基于复合学习的MEMS陀螺仪模糊滑模控制方法,用于解决现有MEMS陀螺仪模态控制方法实用性差的技术问题。技术方案是首先根据模糊预测误差和跟踪误差,设计模糊逻辑权值的复合自适应律,修正模糊逻辑的权重系数,实现未知动力学的有效动态估计;同时由于系统处于滑动模态时,对参数不确定和外界干扰不敏感,设计滑模控制器,实现未知动力学的前馈补偿。本发明考虑预测误差和跟踪误差,设计模糊逻辑权值的复合学习更新律,修正模糊逻辑的权重系数,实现未知动力学的有效动态估计。结合滑模控制理论,实现对MEMS陀螺未知动力学的前馈补偿,进一步提高MEMS陀螺仪的控制精度,实用性好。
-
公开(公告)号:CN107544256A
公开(公告)日:2018-01-05
申请号:CN201710961312.2
申请日:2017-10-17
Applicant: 西北工业大学 , 西北工业大学深圳研究院
IPC: G05B13/04
Abstract: 本发明公开了一种基于自适应反步法的水下机器人滑模控制方法,用于解决现有水下机器人控制方法实用性差的技术问题。技术方案是基于对复杂非线性系统的分解,通过为子系统设计虚拟控制量,结合滑动模态逐级递推得到全系统的控制量;针对系统不确定上界引起的抖振问题,控制器中引入RBF神经网络,自适应逼近系统内部不确定性与外部干扰,最终实现对系统抖振的控制,并实现高精度跟踪控制,提高闭环系统鲁棒性,满足工程需求,实用性好。
-
公开(公告)号:CN107450324B
公开(公告)日:2019-10-22
申请号:CN201710789277.0
申请日:2017-09-05
Applicant: 西北工业大学 , 西北工业大学深圳研究院
IPC: G05B13/04
Abstract: 本发明公开了一种考虑攻角约束的高超声速飞行器自适应容错控制方法,用于解决现有高超声速飞行器控制方法实用性差的技术问题。技术方案是将飞行器攻角限制在给定范围内,保证超燃冲压发动机的正常工作;针对执行器故障情形,给出了鲁棒自适应调整控制策略,利用冗余控制机构有效补偿失效带来的影响以保证系统的安全性。针对模型不确定性。本发明结合限幅设计与Barrier型李雅普诺夫函数给出控制器,可确保攻角能够被约束在给定范围内,保证超燃冲压发动机正常工作。通过神经网络学习处理模型不确定性代替线性参数化处理,简化了模型分析,便于实际应用。针对执行器故障情形,利用冗余控制机构有效自适应补偿故障带来的影响,实用性好。
-
公开(公告)号:CN107608217B
公开(公告)日:2019-09-24
申请号:CN201711073629.9
申请日:2017-11-05
Applicant: 西北工业大学 , 西北工业大学深圳研究院 , 上海航天控制技术研究所
IPC: G05B13/04
Abstract: 本发明公开了一种基于复合学习的MEMS陀螺仪模糊滑模控制方法,用于解决现有MEMS陀螺仪模态控制方法实用性差的技术问题。技术方案是首先根据模糊预测误差和跟踪误差,设计模糊逻辑权值的复合自适应律,修正模糊逻辑的权重系数,实现未知动力学的有效动态估计;同时由于系统处于滑动模态时,对参数不确定和外界干扰不敏感,设计滑模控制器,实现未知动力学的前馈补偿。本发明考虑预测误差和跟踪误差,设计模糊逻辑权值的复合学习更新律,修正模糊逻辑的权重系数,实现未知动力学的有效动态估计。结合滑模控制理论,实现对MEMS陀螺未知动力学的前馈补偿,进一步提高MEMS陀螺仪的控制精度,实用性好。
-
-
-
-
-
-
-
-
-