-
公开(公告)号:CN101968883B
公开(公告)日:2012-08-29
申请号:CN201010527509.3
申请日:2010-10-28
Applicant: 西北工业大学
IPC: G06T5/50
Abstract: 本发明涉及一种基于小波变换和邻域特征的多聚焦图像融合方法。首先利用小波变换对图像进行多尺度分解,获得图像在不同分辨率和不同方向下的低频和高频信息;然后根据低频和高频信息的各自特性,采用不用的融合规则进行处理,其中,对低频子图像采用基于邻域归一化梯度加权平均的融合方法,克服了传统的低频分量融合方法忽略边缘信息的缺点,对高频子图像采用基于邻域标准差加权平均的融合方法,可以最大限度地保留图像的细节信息;最后进行小波重构得到融合图像。本发明克服了传统的融合算法存在的边缘失真现象,使融合后的图像质量和清晰度均有明显提高,可以应用于各类军用或民用的多聚焦图像融合系统。
-
公开(公告)号:CN102063713B
公开(公告)日:2012-06-06
申请号:CN201010544858.6
申请日:2010-11-11
Applicant: 西北工业大学
IPC: G06T5/50
Abstract: 本发明涉及一种基于邻域归一化梯度和邻域标准差的多聚焦图像融合方法。首先利用小波变换对图像进行多尺度分解,获得图像在不同分辨率和不同方向下的低频和高频信息;然后根据低频和高频信息的各自特性,采用不用的融合规则进行处理,其中,对低频子图像采用基于邻域归一化梯度的融合方法,克服了传统的低频分量融合方法忽略边缘信息的缺点,对高频子图像采用基于邻域标准差的融合方法,可以最大限度的保留图像的细节信息;最后进行小波重构得到融合图像。本发明克服了传统的融合算法存在的边缘失真现象,使融合后的图像质量和清晰度均有明显提高,可以应用于各类军用或民用的多聚焦图像融合系统。
-
公开(公告)号:CN102063713A
公开(公告)日:2011-05-18
申请号:CN201010544858.6
申请日:2010-11-11
Applicant: 西北工业大学
IPC: G06T5/50
Abstract: 本发明涉及一种基于邻域归一化梯度和邻域标准差的多聚焦图像融合方法。首先利用小波变换对图像进行多尺度分解,获得图像在不同分辨率和不同方向下的低频和高频信息;然后根据低频和高频信息的各自特性,采用不用的融合规则进行处理,其中,对低频子图像采用基于邻域归一化梯度的融合方法,克服了传统的低频分量融合方法忽略边缘信息的缺点,对高频子图像采用基于邻域标准差的融合方法,可以最大限度的保留图像的细节信息;最后进行小波重构得到融合图像。本发明克服了传统的融合算法存在的边缘失真现象,使融合后的图像质量和清晰度均有明显提高,可以应用于各类军用或民用的多聚焦图像融合系统。
-
公开(公告)号:CN101968883A
公开(公告)日:2011-02-09
申请号:CN201010527509.3
申请日:2010-10-28
Applicant: 西北工业大学
IPC: G06T5/50
Abstract: 本发明涉及一种基于小波变换和邻域特征的多聚焦图像融合方法。首先利用小波变换对图像进行多尺度分解,获得图像在不同分辨率和不同方向下的低频和高频信息;然后根据低频和高频信息的各自特性,采用不用的融合规则进行处理,其中,对低频子图像采用基于邻域归一化梯度加权平均的融合方法,克服了传统的低频分量融合方法忽略边缘信息的缺点,对高频子图像采用基于邻域标准差加权平均的融合方法,可以最大限度地保留图像的细节信息;最后进行小波重构得到融合图像。本发明克服了传统的融合算法存在的边缘失真现象,使融合后的图像质量和清晰度均有明显提高,可以应用于各类军用或民用的多聚焦图像融合系统。
-
-
-