-
公开(公告)号:CN115147709A
公开(公告)日:2022-10-04
申请号:CN202210799673.2
申请日:2022-07-06
Applicant: 西北工业大学
Abstract: 本发明提供了一种基于深度学习的水下目标三维重建方法,采用注意力机制获得水下图片重点聚焦的特征,对图片进行单应性变换,生成匹配特征体,计算该图片的特征体与其他图片特征体的匹配代价,得到一个四维的匹配代价体,使用基于多尺度的三维卷积神经网络进行匹配代价体正则化,对代价体进行过滤,得到深度值概率体,通过神经网络得出深度图,将深度值映射到三维空间,得到三维点云图。本发明充分使用卷积神经网络的特征提取能力,进一步提升模型的表征能力,极大改善立体匹配效果,动态平衡各个通道的权重大小,能够精准的对特征的各个通道进行全局信息调整,有利于优化特征局部信息。
-
公开(公告)号:CN115147709B
公开(公告)日:2024-03-19
申请号:CN202210799673.2
申请日:2022-07-06
Applicant: 西北工业大学
IPC: G06V20/05 , G06N3/0464 , G06N3/09 , G06V10/44 , G06V10/764 , G06V10/80 , G06V10/82
Abstract: 本发明提供了一种基于深度学习的水下目标三维重建方法,采用注意力机制获得水下图片重点聚焦的特征,对图片进行单应性变换,生成匹配特征体,计算该图片的特征体与其他图片特征体的匹配代价,得到一个四维的匹配代价体,使用基于多尺度的三维卷积神经网络进行匹配代价体正则化,对代价体进行过滤,得到深度值概率体,通过神经网络得出深度图,将深度值映射到三维空间,得到三维点云图。本发明充分使用卷积神经网络的特征提取能力,进一步提升模型的表征能力,极大改善立体匹配效果,动态平衡各个通道的权重大小,能够精准的对特征的各个通道进行全局信息调整,有利于优化特征局部信息。
-