一种高光谱图像分类学习方法、系统及计算机存储介质

    公开(公告)号:CN117333708A

    公开(公告)日:2024-01-02

    申请号:CN202311302661.5

    申请日:2023-10-10

    Abstract: 本发明公开了一种高光谱图像分类学习方法、系统及介质,该方法包括:随机采集不同场景下的原始高光谱图像;将原始高光谱图像进行降维和切分,获得三维图像块;将获取的三维图像块输入多层次特征提取神经网络,获得空谱联合特征图;重复迭代应用多层次特征提取神经网络,获得最优质空谱联合特征图;将获取的最优质空谱联合特征图输入到分类网络中,得到分类结果。本发明结合卷积神经网络和ViT的优势,能够充分挖掘高光谱图像不同层次的特征,进而获得最优质空谱联合特征图的分类结果。

Patent Agency Ranking