-
公开(公告)号:CN115100488A
公开(公告)日:2022-09-23
申请号:CN202210726753.5
申请日:2022-06-24
Applicant: 西北农林科技大学
IPC: G06V10/774 , G06V10/764 , G06T7/60 , G06T7/00 , G06V10/82
Abstract: 本发明公开了一种基于三重路径网络的乳腺辅助识别方法、系统、终端及介质,包括:获取原始乳房超声图像,对原始乳房超声图像进行处理,获取面向BIRADS的特征映射;将面向BIRADS的特征映射输入至SATPN网络中,基于编码器对面向BIRADS的特征映射进行特征提取,得到病变特征;对病变特征分别进行分类训练和重建训练,获取图像重建误差和标签预测误差;对图像重建误差和标签预测误差进行加权投票,得到最优的图像。本发明能够集成分类和图像重建任务,以实现对乳房的准确识别,提高先验领域知识的利用率,提高乳腺超声图像的病变分类精度。
-
公开(公告)号:CN115100488B
公开(公告)日:2024-08-13
申请号:CN202210726753.5
申请日:2022-06-24
Applicant: 西北农林科技大学
IPC: G06V10/774 , G06V10/764 , G06T7/60 , G06T7/00 , G06V10/82
Abstract: 本发明公开了一种基于三重路径网络的乳腺辅助识别方法、系统、终端及介质,包括:获取原始乳房超声图像,对原始乳房超声图像进行处理,获取面向BIRADS的特征映射;将面向BIRADS的特征映射输入至SATPN网络中,基于编码器对面向BIRADS的特征映射进行特征提取,得到病变特征;对病变特征分别进行分类训练和重建训练,获取图像重建误差和标签预测误差;对图像重建误差和标签预测误差进行加权投票,得到最优的图像。本发明能够集成分类和图像重建任务,以实现对乳房的准确识别,提高先验领域知识的利用率,提高乳腺超声图像的病变分类精度。
-
公开(公告)号:CN117333708A
公开(公告)日:2024-01-02
申请号:CN202311302661.5
申请日:2023-10-10
Applicant: 西北农林科技大学深圳研究院
IPC: G06V10/764 , G06V10/774 , G06V10/82 , G06V10/77
Abstract: 本发明公开了一种高光谱图像分类学习方法、系统及介质,该方法包括:随机采集不同场景下的原始高光谱图像;将原始高光谱图像进行降维和切分,获得三维图像块;将获取的三维图像块输入多层次特征提取神经网络,获得空谱联合特征图;重复迭代应用多层次特征提取神经网络,获得最优质空谱联合特征图;将获取的最优质空谱联合特征图输入到分类网络中,得到分类结果。本发明结合卷积神经网络和ViT的优势,能够充分挖掘高光谱图像不同层次的特征,进而获得最优质空谱联合特征图的分类结果。
-
-