-
公开(公告)号:CN113158630B
公开(公告)日:2024-02-06
申请号:CN202110275765.6
申请日:2021-03-15
Applicant: 苏州科技大学 , 苏州佳图智绘信息技术有限公司
IPC: G06F40/166 , G06T11/60 , G06V10/44 , G06V10/82 , G06N3/0464 , G06N3/0455 , G06N3/0475 , G06N3/044 , G06N3/094 , G06V10/42
Abstract: 本发明公开了一种文本编辑图像方法、存储介质、电子设备及系统,其方法包括以下步骤:S1、将原始图像和原始图像的第一文本描述信息送入通道注意力模块进行关联,然后送入生成器,生成与文本相关的第一图像,将所述第一图像和第一文本描述信息送入鉴别器进行鉴别;S2、将所述第一图像和原始图像的第二文本描述信息送入通道注意力模块进行关联,然后送入生成器,生成与文本相关的第二图像,将所述第二图像和第二文本描述信息送入鉴别器进行鉴别;S3、利用步骤S1和S2得到的鉴别信息构建循环一致性损失函数,并经过多次迭代对生成器进行训练,得到优化后的生成器。本发明的文本编辑图
-
公开(公告)号:CN114463596B
公开(公告)日:2024-11-05
申请号:CN202111633547.1
申请日:2021-12-28
Applicant: 苏州科技大学 , 苏州市人民政府办公室 , 苏州佳图智绘信息技术有限公司
IPC: G06V10/774 , G06V10/764 , G06V10/74 , G06V10/82 , G06V20/70 , G06N3/045 , G06N3/0464 , G06N3/042 , G06N3/08
Abstract: 本发明涉及一种超图神经网络的小样本图像识别方法,利用卷积神经网络中空洞卷积的不同感受野来获取不同结构的多语义特征,构建多语义超图;利用超图神经网络聚合多语义超图中超节点的所有超边信息更新初始超节点特征表示,得到训练集的超节点特征表示;根据训练集的超节点特征表示,得到多语义分布信息,将多语义分布信息与训练集的超节点特征表示进行信息交互,通过相互迭代更新来不断优化多语义超图,得到训练集的目标超节点特征表示,根据训练集的目标超节点特征表示,计算得到训练集中查询集的分类结果。本发明通过超图结构的图像消息传递,捕获丰富的语义嵌入特征和多个语义分布特征,实现了小样本图像分类的识别。
-
公开(公告)号:CN113239961B
公开(公告)日:2023-10-20
申请号:CN202110384686.9
申请日:2021-04-09
Applicant: 苏州科技大学 , 苏州佳图智绘信息技术有限公司
IPC: G06T11/60 , G06F40/211 , G06N3/0475 , G06N3/094 , G06V30/19
Abstract: 本发明涉及一种基于生成对抗网络的文本生成序列图像的方法,该方法包括:构建训练数据库,训练数据库包括训练文本和与原始图像,利用训练文本和原始图像对生成对抗网络模型进行训练;生成对抗网络模型包括混合生成器和鉴别器,混合生成器包括场景图引导的图像生成器和基于序列条件的图像生成器;将待处理的文本输入至训练后的所述生成对抗网络模型中,由训练后的生成对抗网络模型生成与待处理文本相对应的图像并输出。本发明能够生成与文本描述相匹配的视觉上真实的图像,避免了对象布局混乱的问题,提高了输出图像的准确度。
-
公开(公告)号:CN112785624B
公开(公告)日:2023-07-04
申请号:CN202110064596.1
申请日:2021-01-18
Applicant: 苏州科技大学 , 苏州佳图智绘信息技术有限公司
Abstract: 本发明公开了一种基于孪生网络的RGB‑D特征目标跟踪方法,包括以下步骤:构建基于RGB‑D特征的孪生网络模型;模板图像经共享网络处理,获得模板图像的语义特征,将高层语义特征输入至深度卷积网络模块,获得深度图;对深度图进行深度特征提取,获得深度特征信息,通过级联方式将深度特征信息与语义特征进行融合,获得融合后的图像特征;搜索图像经共享网络处理,获得搜索图像的特征,搜索图像的特征经卷积和池化操作,获得搜索图像的上下文信息,通过搜索图像的上下文信息指导融合后的图像特征,生成用于目标定位的自适应特征;将自适应特征与搜索图像通过共享网络处理获得的特征进行互相关操作,对分数图进行插值计算,获得跟踪的结果。其引入深度图,能够实现在复杂场景中高精度跟踪,效果好。
-
公开(公告)号:CN113158630A
公开(公告)日:2021-07-23
申请号:CN202110275765.6
申请日:2021-03-15
Applicant: 苏州科技大学 , 苏州佳图智绘信息技术有限公司
IPC: G06F40/166 , G06T11/60 , G06K9/46 , G06N3/04 , G06N3/08
Abstract: 本发明公开了一种文本编辑图像方法、存储介质、电子设备及系统,其方法包括以下步骤:S1、将原始图像和原始图像的第一文本描述信息送入通道注意力模块进行关联,然后送入生成器,生成与文本相关的第一图像,将所述第一图像和第一文本描述信息送入鉴别器进行鉴别;S2、将所述第一图像和原始图像的第二文本描述信息送入通道注意力模块进行关联,然后送入生成器,生成与文本相关的第二图像,将所述第二图像和第二文本描述信息送入鉴别器进行鉴别;S3、利用步骤S1和S2得到的鉴别信息构建循环一致性损失函数,并经过多次迭代对生成器进行训练,得到优化后的生成器。本发明的文本编辑图像方法生成的图像更准确、更自然、更多样。
-
公开(公告)号:CN112785624A
公开(公告)日:2021-05-11
申请号:CN202110064596.1
申请日:2021-01-18
Applicant: 苏州科技大学 , 苏州佳图智绘信息技术有限公司
Abstract: 本发明公开了一种基于孪生网络的RGB‑D特征目标跟踪方法,包括以下步骤:构建基于RGB‑D特征的孪生网络模型;模板图像经共享网络处理,获得模板图像的语义特征,将高层语义特征输入至深度卷积网络模块,获得深度图;对深度图进行深度特征提取,获得深度特征信息,通过级联方式将深度特征信息与语义特征进行融合,获得融合后的图像特征;搜索图像经共享网络处理,获得搜索图像的特征,搜索图像的特征经卷积和池化操作,获得搜索图像的上下文信息,通过搜索图像的上下文信息指导融合后的图像特征,生成用于目标定位的自适应特征;将自适应特征与搜索图像通过共享网络处理获得的特征进行互相关操作,对分数图进行插值计算,获得跟踪的结果。其引入深度图,能够实现在复杂场景中高精度跟踪,效果好。
-
公开(公告)号:CN111915644B
公开(公告)日:2023-07-04
申请号:CN202010657633.5
申请日:2020-07-09
Applicant: 苏州科技大学 , 苏州佳图智绘信息技术有限公司
IPC: G06T7/246 , G06V10/82 , G06N3/0464 , G06V10/80 , G06N3/08
Abstract: 本发明公开了一种孪生导向锚框RPN网络的实时目标跟踪方法。本发明一种孪生导向锚框RPN网络的实时目标跟踪方法,包括:S1.分别将大小为127×127×3的模板帧和256×256×3的检测帧输入到孪生网络中的对应输入端口;S2.将通过孪生网络提取得到的特征分别输入到导向RPN(GA‑RPN)网络的目标分类分支和位置回归分支,得到对应的分数图;S3.将导向RPN网络得到的分类分数图和位置回归分数图结果融合,然后进行插值计算,即可得到跟踪的结果。本发明的有益效果:解决孪生RPN目标跟踪网络的精度较低和速度较低的问题。
-
公开(公告)号:CN114463596A
公开(公告)日:2022-05-10
申请号:CN202111633547.1
申请日:2021-12-28
Applicant: 苏州科技大学 , 苏州市人民政府办公室 , 苏州佳图智绘信息技术有限公司
IPC: G06V10/774 , G06V10/764 , G06V10/74 , G06V10/82 , G06K9/62 , G06N3/04 , G06N3/08
Abstract: 本发明涉及一种超图神经网络的小样本图像识别方法,利用卷积神经网络中空洞卷积的不同感受野来获取不同结构的多语义特征,构建多语义超图;利用超图神经网络聚合多语义超图中超节点的所有超边信息更新初始超节点特征表示,得到训练集的超节点特征表示;根据训练集的超节点特征表示,得到多语义分布信息,将多语义分布信息与训练集的超节点特征表示进行信息交互,通过相互迭代更新来不断优化多语义超图,得到训练集的目标超节点特征表示,根据训练集的目标超节点特征表示,计算得到训练集中查询集的分类结果。本发明通过超图结构的图像消息传递,捕获丰富的语义嵌入特征和多个语义分布特征,实现了小样本图像分类的识别。
-
公开(公告)号:CN113239961A
公开(公告)日:2021-08-10
申请号:CN202110384686.9
申请日:2021-04-09
Applicant: 苏州科技大学 , 苏州佳图智绘信息技术有限公司
IPC: G06K9/62 , G06F40/211 , G06N3/04 , G06N3/08
Abstract: 本发明涉及一种基于生成对抗网络的文本生成序列图像的方法,该方法包括:构建训练数据库,训练数据库包括训练文本和与原始图像,利用训练文本和原始图像对生成对抗网络模型进行训练;生成对抗网络模型包括混合生成器和鉴别器,混合生成器包括场景图引导的图像生成器和基于序列条件的图像生成器;将待处理的文本输入至训练后的所述生成对抗网络模型中,由训练后的生成对抗网络模型生成与待处理文本相对应的图像并输出。本发明能够生成与文本描述相匹配的视觉上真实的图像,避免了对象布局混乱的问题,提高了输出图像的准确度。
-
公开(公告)号:CN111915644A
公开(公告)日:2020-11-10
申请号:CN202010657633.5
申请日:2020-07-09
Applicant: 苏州科技大学 , 苏州佳图智绘信息技术有限公司
Abstract: 本发明公开了一种孪生导向锚框RPN网络的实时目标跟踪方法。本发明一种孪生导向锚框RPN网络的实时目标跟踪方法,包括:S1.分别将大小为127×127×3的模板帧和256×256×3的检测帧输入到孪生网络中的对应输入端口;S2.将通过孪生网络提取得到的特征分别输入到导向RPN(GA-RPN)网络的目标分类分支和位置回归分支,得到对应的分数图;S3.将导向RPN网络得到的分类分数图和位置回归分数图结果融合,然后进行插值计算,即可得到跟踪的结果。本发明的有益效果:解决孪生RPN目标跟踪网络的精度较低和速度较低的问题。
-
-
-
-
-
-
-
-
-