一种基于矩阵分解的主动学习评分引导方法及系统

    公开(公告)号:CN104850645B

    公开(公告)日:2018-08-14

    申请号:CN201510282807.3

    申请日:2015-05-28

    Abstract: 本发明提供了一种基于矩阵分解的主动学习评分引导方法及系统,包括:分别获取新用户的用户特征、其他用户的用户特征、新用户未评分项目的项目特征及其他用户已评分项目的项目特征;通过计算新用户的用户特征和其他用户的用户特征间的余弦相似度获取相似用户;采用相似用户中已评分项目的流行度和信息含量获取最优项目,并将最优项目交由新用户,以采用新用户对最优项目进行评分,获取评分结果。与现有技术相比,本发明采用基于矩阵分解的主动学习评分引导方法及模型,更好的预测了用户的偏好信息,进而提高了推荐准确率。

    一种基于矩阵分解的主动学习评分引导方法及系统

    公开(公告)号:CN104850645A

    公开(公告)日:2015-08-19

    申请号:CN201510282807.3

    申请日:2015-05-28

    Abstract: 本发明提供了一种基于矩阵分解的主动学习评分引导方法及系统,包括:分别获取新用户的用户特征、其他用户的用户特征、新用户未评分项目的项目特征及其他用户已评分项目的项目特征;通过计算新用户的用户特征和其他用户的用户特征间的余弦相似度获取相似用户;采用相似用户中已评分项目的流行度和信息含量获取最优项目,并将最优项目交由新用户,以采用新用户对最优项目进行评分,获取评分结果。与现有技术相比,本发明采用基于矩阵分解的主动学习评分引导方法及模型,更好的预测了用户的偏好信息,进而提高了推荐准确率。

Patent Agency Ranking