-
公开(公告)号:CN111292338B
公开(公告)日:2023-04-21
申请号:CN202010073201.X
申请日:2020-01-22
Applicant: 苏州大学
IPC: G06T7/11
Abstract: 本发明公开了医学图像处理技术领域的一种从眼底OCT图像中分割脉络膜新生血管的方法及系统,旨在解决现有技术中脉络膜新生血管的分割结果中分割准确度低、病变的边界区域不清晰的技术问题,采集包含脉络膜新生血管病变的眼底OCT图像;构建基于差分放大模块的卷积神经网络;训练构建的基于差分放大模块的卷积神经网络并测试;使用训练好的网络从眼底OCT图像中分割脉络膜新生血管。本发明采用VGG16作为U‑Net网络的编码部分,在每个卷积块的池化操作之后连接一个差分放大模块,构成跳跃连接,来增加网络在训练时对高低频信息的注意,采用二进制交叉熵损失函数和Dice损失函数之和作为损失函数来约束整个网络,分割准确度高、病变的边界区域更加清晰精确。
-
公开(公告)号:CN113160226A
公开(公告)日:2021-07-23
申请号:CN202110565331.X
申请日:2021-05-24
Applicant: 苏州大学
Abstract: 本发明涉及一种基于双向引导网络的AMD病变OCT图像的分类分割方法及系统,包括以下步骤:获取OCT图像,将所述OCT图像分成训练集、验证集和测试集;构建掩模互补卷积神经网络以用于OCT图像的分类;采用Grad‑CAM算法计算掩模互补卷积神经网络的类激活图,获得类激活图的输出;构建类激活图引导的U型分割网络以用于OCT图像中病变区域的分割;通过训练集和验证集对网络进行训练,获得优化后的掩模互补卷积神经网络和类激活图引导的U型分割网络;将测试集代入优化后的掩模互补卷积神经网络和类激活图引导的U型分割网络中,实现OCT图像的分类和分割。其能够对含有玻璃膜疣、CNV以及正常视网膜OCT图像进行准确的分类,并给出病变区域精确的分割结果。
-
公开(公告)号:CN111292338A
公开(公告)日:2020-06-16
申请号:CN202010073201.X
申请日:2020-01-22
Applicant: 苏州大学
IPC: G06T7/11
Abstract: 本发明公开了医学图像处理技术领域的一种从眼底OCT图像中分割脉络膜新生血管的方法及系统,旨在解决现有技术中脉络膜新生血管的分割结果中分割准确度低、病变的边界区域不清晰的技术问题,采集包含脉络膜新生血管病变的眼底OCT图像;构建基于差分放大模块的卷积神经网络;训练构建的基于差分放大模块的卷积神经网络并测试;使用训练好的网络从眼底OCT图像中分割脉络膜新生血管。本发明采用VGG16作为U-Net网络的编码部分,在每个卷积块的池化操作之后连接一个差分放大模块,构成跳跃连接,来增加网络在训练时对高低频信息的注意,采用二进制交叉熵损失函数和Dice损失函数之和作为损失函数来约束整个网络,分割准确度高、病变的边界区域更加清晰精确。
-
-