一种基于联合学习的静态图像人群计数方法

    公开(公告)号:CN109344736B

    公开(公告)日:2021-07-09

    申请号:CN201811060252.8

    申请日:2018-09-12

    Applicant: 苏州大学

    Abstract: 本发明公开了一种基于联合学习的静态图像人群计数方法,包括:预训练阶段:使用50层残差网络在ImageNet2012分类数据集上训练得到参数初始化分类器网络,通过一个Softmax将图像块分类成三种类别,分别对应三个回归器;回归器训练阶段:将训练数据集的每一个图像块都分别输入三个回归器,同一个图像块都会得到不同的计数结果,将计数误差最小的回归器作为分类标签来标记该图像块,用三种类别的图像块分别对各自的回归器进行微调;分类器训练阶段:随机抽取样本并且保证每种类别的标签数量一致;联合训练阶段:对分类器和回归器不断迭代训练。本发明能够在人群密集场景中进行计数与密度估计,具有一定的尺度自适应性,提高了计数精度与模型泛化能力。

    一种基于联合学习的静态图像人群计数方法

    公开(公告)号:CN109344736A

    公开(公告)日:2019-02-15

    申请号:CN201811060252.8

    申请日:2018-09-12

    Applicant: 苏州大学

    Abstract: 本发明公开了一种基于联合学习的静态图像人群计数方法,包括:预训练阶段:使用50层残差网络在ImageNet2012分类数据集上训练得到参数初始化分类器网络,通过一个Softmax将图像块分类成三种类别,分别对应三个回归器;回归器训练阶段:将训练数据集的每一个图像块都分别输入三个回归器,同一个图像块都会得到不同的计数结果,将计数误差最小的回归器作为分类标签来标记该图像块,用三种类别的图像块分别对各自的回归器进行微调;分类器训练阶段:随机抽取样本并且保证每种类别的标签数量一致;联合训练阶段:对分类器和回归器不断迭代训练。本发明能够在人群密集场景中进行计数与密度估计,具有一定的尺度自适应性,提高了计数精度与模型泛化能力。

Patent Agency Ranking