基于参考图像的线稿上色模型的训练方法以及装置

    公开(公告)号:CN108615252A

    公开(公告)日:2018-10-02

    申请号:CN201810414328.6

    申请日:2018-05-03

    Applicant: 苏州大学

    Abstract: 本发明公开了一种基于参考图像的线稿上色模型的训练方法,能够利用多组训练样本,训练线稿上色模型获取参考图像的语义信息特征,并根据语义信息特征对线稿进行上色,得到上色线稿,然后对上色线稿和对比线稿进行鉴别,并不断调整模型参数直至鉴别结果满足预设要求。可见,该方法训练得到的模型能够获取参考图像中的语义信息特征,并利用语义信息特征对线稿进行上色,因而能够通过切换不同的参考图像来为线稿上不同风格的色彩,避免了色彩风格单一的问题。此外,本发明还提供了基于参考图像的线稿上色模型的训练装置、设备和计算机可读存储介质,以及基于参考图像为线稿上色的方法和装置,其作用与上述训练方法的作用相对应。

    基于多特征融合的视频描述方法

    公开(公告)号:CN107256221B

    公开(公告)日:2020-11-03

    申请号:CN201710281305.8

    申请日:2017-04-26

    Applicant: 苏州大学

    Abstract: 本发明公开了一种基于多特征融合的视频描述方法,其特征在于:1)通过融合传统CNN特征和SIFT流特征提取视频的深层时空特征;2)根据步骤1)提取的深层时空特征,采用加入以平均池化特征作为视频整体特征的S2VT句子生成模型生成相应的句子描述;3)采用word2vec词向量替换one‑hot vector词表征优化步骤2)中的句子生成模型。本方法优点是通过多特征融合,能更好地提取到更加鲁棒的时空特征,同时在句子生成模型中加入平均池化特征,以便视觉信息与单词间建立更多联系,最后采用word2vec词向量方法替换one‑hot vector词表征,在单词与单词之间建立更多的联系,有效提高视频描述性能。

    基于多特征融合的视频描述方法

    公开(公告)号:CN107256221A

    公开(公告)日:2017-10-17

    申请号:CN201710281305.8

    申请日:2017-04-26

    Applicant: 苏州大学

    Abstract: 本发明公开了一种基于多特征融合的视频描述方法,其特征在于:1)通过融合传统CNN特征和SIFT流特征提取视频的深层时空特征;2)根据步骤1)提取的深层时空特征,采用加入以平均池化特征作为视频整体特征的S2VT句子生成模型生成相应的句子描述;3)采用word2vec词向量替换one‑hot vector词表征优化步骤2)中的句子生成模型。本方法优点是通过多特征融合,能更好地提取到更加鲁棒的时空特征,同时在句子生成模型中加入平均池化特征,以便视觉信息与单词间建立更多联系,最后采用word2vec词向量方法替换one‑hot vector词表征,在单词与单词之间建立更多的联系,有效提高视频描述性能。

Patent Agency Ranking