-
公开(公告)号:CN108845988A
公开(公告)日:2018-11-20
申请号:CN201810581154.2
申请日:2018-06-07
Applicant: 苏州大学
Abstract: 本发明公开了一种实体识别方法、装置、设备及计算机可读存储介质,该方法包括:获取训练数据集为当前数据集;利用当前数据集训练当前识别模型得到当前识别模型,判断其识别准确度是否达到准确度阈值,若是,则确定完成训练,若否,则调整当前识别模型的参数得到当前识别模型,将当前数据集中每个训练样本的样本特征输入至当前选取模型,计算当前选取模型输出的决策的分数,基于该分数调整当前选取模型的参数得到当前选取模型;将包括有决策为保留的全部训练样本的数据集作为当前数据集,返回执行训练当前识别模型的步骤;利用实体识别模型实现实体识别,基于识别到的实体实现对应产品的推荐。保证实体识别模型识别性能较好,实现产品的准确推荐。
-
公开(公告)号:CN108845988B
公开(公告)日:2022-06-10
申请号:CN201810581154.2
申请日:2018-06-07
Applicant: 苏州大学
IPC: G06F40/295 , G06K9/62 , G06Q30/02
Abstract: 本发明公开了一种实体识别方法、装置、设备及计算机可读存储介质,该方法包括:获取训练数据集为当前数据集;利用当前数据集训练当前识别模型得到当前识别模型,判断其识别准确度是否达到准确度阈值,若是,则确定完成训练,若否,则调整当前识别模型的参数得到当前识别模型,将当前数据集中每个训练样本的样本特征输入至当前选取模型,计算当前选取模型输出的决策的分数,基于该分数调整当前选取模型的参数得到当前选取模型;将包括有决策为保留的全部训练样本的数据集作为当前数据集,返回执行训练当前识别模型的步骤;利用实体识别模型实现实体识别,基于识别到的实体实现对应产品的推荐。保证实体识别模型识别性能较好,实现产品的准确推荐。
-
公开(公告)号:CN108228564B
公开(公告)日:2021-02-19
申请号:CN201810007733.6
申请日:2018-01-04
Applicant: 苏州大学
IPC: G06F40/295 , G06N3/04 , G06N3/08
Abstract: 本发明涉及一种在众包数据上进行对抗学习的命名实体识别方法,在特定的领域内,只要制定好实体标注规范,用众包标注的方法就能以较低的标注成本快速构建大规模标注语料,在一定程度上缓解了缺乏标注语料的困境,更好得使用众包数据,提高模型在众包数据上的学习质量:不同于之前的数据使用方式,我们使模型能自主地学习语料中由不同标注员造成的标注不当,在原来的模型上加入了对抗学习模型,以此判别出语料中的标注噪声,提高模型的识别能力,更好地趋向专家的高质量标注策略,丰富了神经网络模型的现实意义,使之符合具体的应用。
-
公开(公告)号:CN110348017A
公开(公告)日:2019-10-18
申请号:CN201910636562.8
申请日:2019-07-15
Applicant: 苏州大学
Abstract: 本申请公开了一种文本实体检测方法,所述文本实体检测方法包括利用种子实体集合对目标语句中的每个语句实例进行匹配得到匹配结果,并根据所述匹配结果生成所述目标语句对应的标注数据;查询所述目标语句中与无标注语料词频表匹配的语句实例,并根据查询结果修改所述标注数据得到局部标注数据;利用所述局部标注数据训练序列标注神经模型;利用训练后的序列标注神经模型对所述目标语句中的无标注语料进行序列标注,以便得到所述目标语句的实体集合。本方法能够在不受无标注语料的质量和规模限制的前提下实现高质量的实体挖掘。本申请还公开了一种文本实体检测系统、一种计算机可读存储介质及一种电子设备,具有以上有益效果。
-
公开(公告)号:CN110348017B
公开(公告)日:2022-12-23
申请号:CN201910636562.8
申请日:2019-07-15
Applicant: 苏州大学
IPC: G06F40/295 , G06F16/33 , G06N3/08
Abstract: 本申请公开了一种文本实体检测方法,所述文本实体检测方法包括利用种子实体集合对目标语句中的每个语句实例进行匹配得到匹配结果,并根据所述匹配结果生成所述目标语句对应的标注数据;查询所述目标语句中与无标注语料词频表匹配的语句实例,并根据查询结果修改所述标注数据得到局部标注数据;利用所述局部标注数据训练序列标注神经模型;利用训练后的序列标注神经模型对所述目标语句中的无标注语料进行序列标注,以便得到所述目标语句的实体集合。本方法能够在不受无标注语料的质量和规模限制的前提下实现高质量的实体挖掘。本申请还公开了一种文本实体检测系统、一种计算机可读存储介质及一种电子设备,具有以上有益效果。
-
公开(公告)号:CN110348018A
公开(公告)日:2019-10-18
申请号:CN201910642480.4
申请日:2019-07-16
Applicant: 苏州大学
Abstract: 本发明公开了一种使用局部学习完成简易事件抽取的方法。本发明一种使用局部学习完成简易事件抽取的方法,包括:标注规范构建过程:根据框架下的三类:动宾、双动词、其他,给出具体事件定义。本发明的有益效果:尝试解决远程监督获取的数据中存在的漏标和错标问题,提高模型对于命名实体的识别性能。
-
公开(公告)号:CN108228564A
公开(公告)日:2018-06-29
申请号:CN201810007733.6
申请日:2018-01-04
Applicant: 苏州大学
Abstract: 本发明涉及一种在众包数据上进行对抗学习的命名实体识别方法,在特定的领域内,只要制定好实体标注规范,用众包标注的方法就能以较低的标注成本快速构建大规模标注语料,在一定程度上缓解了缺乏标注语料的困境,更好得使用众包数据,提高模型在众包数据上的学习质量:不同于之前的数据使用方式,我们使模型能自主地学习语料中由不同标注员造成的标注不当,在原来的模型上加入了对抗学习模型,以此判别出语料中的标注噪声,提高模型的识别能力,更好地趋向专家的高质量标注策略,丰富了神经网络模型的现实意义,使之符合具体的应用。
-
-
-
-
-
-