一种深层网络数据源异常点的检测方法及系统

    公开(公告)号:CN103927392B

    公开(公告)日:2017-03-22

    申请号:CN201410183963.X

    申请日:2014-05-04

    Applicant: 苏州大学

    Abstract: 本申请公开了一种深层网络数据源异常点的检测方法及系统,该方法包括从深层网络数据源中采集多个初始样本,然后按照预设规则,对每个所述初始样本进行分层得到s层,分层后按照预设算法,确定每一层中包含异常点的概率,按照最优采样策略,将规定的重采样次数分配到s层中,确定每一层的重采样次数,按照确定的重采样次数进行重采样,最后综合重采样数据与分层后的初始样本,进行异常点的检测。本申请的方法对有限的样本数据进行分层处理,由于异常点大部分集中在少数几个层中,通过着重对这几个层的重新采样,可以找到更多的异常点。解决了对深层网络数据源异常点的检测问题。

    一种深层网络数据源异常点的检测方法及系统

    公开(公告)号:CN103927392A

    公开(公告)日:2014-07-16

    申请号:CN201410183963.X

    申请日:2014-05-04

    Applicant: 苏州大学

    CPC classification number: G06F17/3089

    Abstract: 本申请公开了一种深层网络数据源异常点的检测方法及系统,该方法包括从深层网络数据源中采集多个初始样本,然后按照预设规则,对每个所述初始样本进行分层得到s层,分层后按照预设算法,确定每一层中包含异常点的概率,按照最优采样策略,将规定的重采样次数分配到s层中,确定每一层的重采样次数,按照确定的重采样次数进行重采样,最后综合重采样数据与分层后的初始样本,进行异常点的检测。本申请的方法对有限的样本数据进行分层处理,由于异常点大部分集中在少数几个层中,通过着重对这几个层的重新采样,可以找到更多的异常点。解决了对深层网络数据源异常点的检测问题。

    一种异常检测训练集的构建方法及装置

    公开(公告)号:CN103559420B

    公开(公告)日:2016-09-28

    申请号:CN201310589362.4

    申请日:2013-11-20

    Applicant: 苏州大学

    Abstract: 本申请公开了一种异常检测训练集构建方法及装置,该方法将获取到的样本数据集合确定为当前数据集合,依据接收到的各个当前标注指令,在当前数据集合中获取已标注数据,将已标注数据加入第一数据集合,将未标注数据组成第二数据集合,判断异常点数据的个数是否达到预设数值,若是,依据已标记数据和未标记数据生成训练集,若否,依据第一数据集合计算未标注数据的异常点概率,依据异常点概率对所述未标注数据进行排序,并确定为当前数据集合,返回执行获取各个当前标注指令。与现有技术单次计算异常点概率相比,本方法利用已标注数据对未标注数据重新计算异常点概率,依据异常点概率排序后异常点排序前移,可减少标注次数,提高训练集构建效率。

    一种异常检测训练集的构建方法及装置

    公开(公告)号:CN103559420A

    公开(公告)日:2014-02-05

    申请号:CN201310589362.4

    申请日:2013-11-20

    Applicant: 苏州大学

    Abstract: 本申请公开了一种异常检测训练集构建方法及装置,该方法将获取到的样本数据集合确定为当前数据集合,依据接收到的各个当前标注指令,在当前数据集合中获取已标注数据,将已标注数据加入第一数据集合,将未标注数据组成第二数据集合,判断异常点数据的个数是否达到预设数值,若是,依据已标记数据和未标记数据生成训练集,若否,依据第一数据集合计算未标注数据的异常点概率,依据异常点概率对所述未标注数据进行排序,并确定为当前数据集合,返回执行获取各个当前标注指令。与现有技术单次计算异常点概率相比,本方法利用已标注数据对未标注数据重新计算异常点概率,依据异常点概率排序后异常点排序前移,可减少标注次数,提高训练集构建效率。

Patent Agency Ranking