-
公开(公告)号:CN111346645B
公开(公告)日:2023-11-28
申请号:CN202010177973.8
申请日:2020-03-13
Applicant: 苏州大学
IPC: B22F9/24 , C25B1/02 , C25B1/30 , C25B11/091 , B82Y40/00 , B82Y30/00 , B22F1/0545 , C22C19/07
Abstract: 本发明公开了一种高分散合金纳米粒子及其制备方法与应用,采用以下步骤:将酸、醇加入到混有金属盐的还原石墨烯溶液中,得到混合液;然后将混合液超声处理后离心分离,再将沉淀烘干,得到高分散合金纳米粒子。该方法具有操作简便、合成周期短、产品质量易于控制和粒径尺寸均匀等优点。
-
公开(公告)号:CN113430532B
公开(公告)日:2022-03-11
申请号:CN202110679408.6
申请日:2021-06-18
Applicant: 苏州大学
IPC: C25B1/04 , C25B11/061 , C25B11/091
Abstract: 本发明涉及一种利用离子液体电沉积制备Ni‑Mo‑P纳米合金薄膜电极的方法,该方法成功解决了传统水溶液电沉积制备镍基合金薄膜电极存在的电流效率低,废液产量高、薄膜组织粗大以及氢致缺陷高等问题。离子液体电沉积制备Ni‑Mo‑P纳米合金薄膜电极的方法包括以下步骤,将磷酸盐、柠檬酸、钼盐、镍盐分别加入氯化胆碱和乙二醇混合的离子溶剂中,得到离子镀液;以黄铜片为基板,通过恒电流法在黄铜片上电沉积制备Ni‑Mo‑P纳米合金薄膜电极,其中,磷酸盐为NaH2PO2、钼盐为(NH4)6Mo7O24、镍盐为NiCl2,镀液温度为60~80℃;电流密度为5~50mA/cm2,电沉积的时间为3~7min。本发明制备的Ni‑Mo‑P合金薄膜电极具有良好的析氢催化性能(η200=169mV,b=51.2mV/dec)。
-
公开(公告)号:CN113430532A
公开(公告)日:2021-09-24
申请号:CN202110679408.6
申请日:2021-06-18
Applicant: 苏州大学
IPC: C25B1/04 , C25B11/061 , C25B11/091
Abstract: 本发明涉及一种利用离子液体电沉积制备Ni‑Mo‑P纳米合金薄膜电极的方法,该方法成功解决了传统水溶液电沉积制备镍基合金薄膜电极存在的电流效率低,废液产量高、薄膜组织粗大以及氢致缺陷高等问题。离子液体电沉积制备Ni‑Mo‑P纳米合金薄膜电极的方法包括以下步骤,将磷酸盐、柠檬酸、钼盐、镍盐分别加入氯化胆碱和乙二醇混合的离子溶剂中,得到离子镀液;以黄铜片为基板,通过恒电流法在黄铜片上电沉积制备Ni‑Mo‑P纳米合金薄膜电极,其中,磷酸盐为NaH2PO2、钼盐为(NH4)6Mo7O24、镍盐为NiCl2,镀液温度为60~80℃;电流密度为5~50mA/cm2,电沉积的时间为3~7min。本发明制备的Ni‑Mo‑P合金薄膜电极具有良好的析氢催化性能(η200=169mV,b=51.2mV/dec)。
-
公开(公告)号:CN111346645A
公开(公告)日:2020-06-30
申请号:CN202010177973.8
申请日:2020-03-13
Applicant: 苏州大学
Abstract: 本发明公开了一种高分散合金纳米粒子及其制备方法与应用,采用以下步骤:将酸、醇加入到混有金属盐的还原石墨烯溶液中,得到混合液;然后将混合液超声处理后离心分离,再将沉淀烘干,得到高分散合金纳米粒子。该方法具有操作简便、合成周期短、产品质量易于控制和粒径尺寸均匀等优点。
-
-
-