基于贝叶斯优化的查询高效的黑盒对抗攻击

    公开(公告)号:CN112633309A

    公开(公告)日:2021-04-09

    申请号:CN202011007795.0

    申请日:2020-09-23

    Abstract: 描述了对神经网络分类器实行对抗攻击。构造输入输出对的数据集,输入输出对的每个输入元素是从搜索空间中随机挑选的,输入输出对的每个输出元素指示针对对应输入元素的神经网络分类器的预测输出。在输入输出对的数据集上利用高斯过程来优化获取函数,以从数据集中找到最佳扰动输入元素。对最佳扰动输入元素进行上采样以生成经上采样的最佳输入元素。经上采样的最佳输入元素被添加到原始输入以生成候选输入。查询神经网络分类器,以确定针对候选输入的分类器预测。计算分类器预测的分数。响应于分类器预测为不正确的,接受候选输入作为成功的对抗攻击。

    具有用于制造的传感器数据的序列建模的系统和方法

    公开(公告)号:CN118211695A

    公开(公告)日:2024-06-18

    申请号:CN202311740310.2

    申请日:2023-12-15

    Abstract: 计算机实现的系统和方法包括建立给定部件穿过的站序列。历史嵌入序列被生成并包括(a)基于历史测量数据的历史测量嵌入,(b)基于至少一个其他部件的至少一个历史部件标识符的历史部件标识符嵌入,和(c)基于对应于历史测量数据的至少一个历史站标识符的历史站标识符嵌入。输入嵌入序列被生成并包括(a)基于观察测量数据的测量嵌入,(b)基于给定部件的部件标识符的部件标识符嵌入,和(c)基于对应于观察测量数据的站标识符的站标识符嵌入。编码网络基于历史嵌入序列生成中间历史特征。解码网络基于中间历史特征和输入嵌入序列生成预测测量数据。预测测量数据包括下一站处的给定部件的下一测量数据,下一站在站序列中跟随站子序列。

    用于制造的具有预训练特征提取的预测性维护

    公开(公告)号:CN118567219A

    公开(公告)日:2024-08-30

    申请号:CN202410213606.7

    申请日:2024-02-27

    Abstract: 提供了用于制造的具有预训练特征提取的预测性维护。一种计算机实施的系统和方法包括建立给定零件遍历的站序列。每个站包括相对于给定零件执行至少一个操作的机器。接收与遍历多个机器的多个零件的属性相关的测量数据。测量数据由传感器获得,并且对应于当前处理周期。第一机器学习模型被预训练以生成(i)基于测量数据的隐表示和(ii)基于隐表示的机器状态。接收与当前处理周期相关的机器观察数据。基于测量数据和机器观察数据生成聚合数据。第二机器学习模型基于聚合数据生成维护预测。维护预测对应于下一个处理周期。

Patent Agency Ranking