-
公开(公告)号:CN114920907B
公开(公告)日:2023-06-20
申请号:CN202210536956.8
申请日:2022-05-17
Applicant: 福建农林大学
IPC: C08G61/02 , B01J20/26 , C02F1/28 , C02F101/36
Abstract: 本发明涉及环境材料领域,公开了一种氨基化多孔芳香骨架类化合物及其制备方法和应用,该氨基化多孔芳香骨架类化合物在刚性的疏水骨架上后修饰密集的氨基,从而制备出易被润湿的表面,利用骨架疏水作用和质子化氨基的静电作用协同吸附PFAS。其制备方法主要包括:2,5‑二溴苯基醛和端位炔基化合物在催化剂作用下进行碳‑碳偶联反应生成中间产物,中间产物经氨基后合成修饰得到氨基化多孔芳香骨架类化合物。该化合物提高了PFAS吸附选择性,能够高效吸附移除水中的全氟烷基化合物(如全氟烷基磺酸和全氟烷基羧酸),克服了现有技术中吸附剂存在吸附量不足、选择性低、动力学缓慢及难以再生等问题。
-
公开(公告)号:CN115584629A
公开(公告)日:2023-01-10
申请号:CN202211296756.6
申请日:2022-10-21
Applicant: 福建农林大学
IPC: D06M13/192 , D06M13/332 , D06M11/70 , D06M101/04
Abstract: 本发明属于植物纤维改性技术领域,公开了一种抗菌抗病毒壳寡糖植物纤维及其制备方法和应用。制备方法包括以下步骤:1)浸渍液配置:取柠檬酸和次亚磷酸钠加入到去离子水中,室温搅拌溶解得到浸渍液;2)二次浸渍法制备壳寡糖抗菌抗病毒纤维:将经打浆后的植物纤维加入步骤1)的浸渍液中搅拌、浸渍;然后在浸渍液中加入壳寡糖,搅拌均匀后,再次浸渍,接着烘干至恒重,然后在烘箱中固化,用水洗涤即得到抗菌抗病毒壳寡糖植物纤维。本发明抗菌抗病毒壳寡糖植物纤维壳寡糖固定量高达61.77mg/g,对大肠杆菌、金黄色葡萄球菌的抑菌率高达100%,其对噬菌体MS2的抑制率高达99.19%。同时具备良好的抗氧化性能和力学性能等。
-
公开(公告)号:CN115947877B
公开(公告)日:2024-07-26
申请号:CN202211665539.X
申请日:2022-12-23
Applicant: 福建农林大学
IPC: C08B37/08 , D06M15/03 , D06M13/207 , D06M11/70 , C07H13/12 , C07H1/00 , D21H21/36 , D06M101/06 , D06M101/04
Abstract: 本发明属于植物纤维改性技术领域,公开了一种胍化壳寡糖及其抗菌抗病毒植物纤维和制备方法。制备方法包括以下步骤:1)胍化壳寡糖的合成:双氰胺在三氟甲磺酸钪的催化作用下,与壳寡糖在中性水溶性中发生亲核加成反应,获得胍化壳寡糖;2)浸渍液配置3)二次浸渍法制备抗菌抗病毒胍化壳寡糖植物纤维。本发明中胍化壳寡糖的取代度更高,可以达到60.68%,比壳寡糖展现出更强抗菌活性,抗菌抗病毒胍化壳寡糖植物纤维壳寡糖固定量高达539.3mmol/g,对大肠杆菌、金黄色葡萄球菌的抑菌率高达100%,其对噬菌体MS2的抑制率高达99.48%。经过30次水洗后,抗菌抗病毒活性几乎没有下降。具备良好的抗氧化性能和力学性能等。
-
公开(公告)号:CN115584629B
公开(公告)日:2024-01-30
申请号:CN202211296756.6
申请日:2022-10-21
Applicant: 福建农林大学
IPC: D06M13/192 , D06M13/332 , D06M11/70 , D06M101/04
Abstract: 本发明属于植物纤维改性技术领域,公开了一种抗菌抗病毒壳寡糖植物纤维及其制备方法和应用。制备方法包括以下步骤:1)浸渍液配置:取柠檬酸和次亚磷酸钠加入到去离子水中,室温搅拌溶解得到浸渍液;2)二次浸渍法制备壳寡糖抗菌抗病毒纤维:将经打浆后的植物纤维加入步骤1)的浸渍液中搅拌、浸渍;然后在浸渍液中加入壳寡糖,搅拌均匀后,再次浸渍,接着烘干至恒重,然后在烘箱中固化,用水洗涤即得到抗菌抗病毒壳寡糖植物纤维。本发明抗菌抗病毒壳寡糖植物纤维壳寡糖固定量高达61.77mg/g,对大肠杆菌、金黄色葡萄球菌的抑菌率高达100%,其对噬菌体MS2的抑制率高达99.19%。同时具备良好的抗氧化性能和力学性能等。
-
公开(公告)号:CN114904580B
公开(公告)日:2023-08-18
申请号:CN202210510775.8
申请日:2022-05-11
Applicant: 福建农林大学
Abstract: 本发明涉及光催化剂领域,公开了一种NGQDs@ZIF‑67复合材料及其制备方法和应用。该制备方法包括以下步骤:S1.将六水合硝酸钴和2‑甲基咪唑溶解于有机溶剂中混合得到ZIF‑67;S2.利用柠檬酸热解法制备得到GQDs;S3.将S2中得到的GQDs与氨水溶液混合形成混合溶液,将混合溶液转入反应釜中进行反应得到NGQDs;S4.将S1中得到的ZIF‑67分散于有机溶剂中形成悬浮液,再将S3中得到的NGQDs加入悬浮液中得到混合溶液,混合溶液经处理得到NGQDs@ZIF‑67。该NGQDs@ZIF‑67复合材料减小了带隙能量,使电子‑空穴对的直接复合减少,显著提高了电荷分离效率。
-
公开(公告)号:CN114904580A
公开(公告)日:2022-08-16
申请号:CN202210510775.8
申请日:2022-05-11
Applicant: 福建农林大学
Abstract: 本发明涉及光催化剂领域,公开了一种NGQDs@ZIF‑67复合材料及其制备方法和应用。该制备方法包括以下步骤:S1.将六水合硝酸钴和2‑甲基咪唑溶解于有机溶剂中混合得到ZIF‑67;S2.利用柠檬酸热解法制备得到GQDs;S3.将S2中得到的GQDs与氨水溶液混合形成混合溶液,将混合溶液转入反应釜中进行反应得到NGQDs;S4.将S1中得到的ZIF‑67分散于有机溶剂中形成悬浮液,再将S3中得到的NGQDs加入悬浮液中得到混合溶液,混合溶液经处理得到NGQDs@ZIF‑67。该NGQDs@ZIF‑67复合材料减小了带隙能量,使电子‑空穴对的直接复合减少,显著提高了电荷分离效率。
-
公开(公告)号:CN112195649B
公开(公告)日:2021-10-22
申请号:CN202010883350.2
申请日:2020-08-28
Applicant: 福建农林大学
IPC: D06M11/83 , D06M15/61 , D01D1/00 , C23C18/44 , D06M101/06
Abstract: 本发明属于抗菌抗病毒纤维材料制备技术领域,公开了一种仿生苍耳型抗菌抗病毒植物纤维的制备方法,通过机械打浆方法使植物纤维表面细纤维化,制备苍耳型植物纤维,增加了植物纤维的比表面积和孔隙率,从而增加了聚苯胺在植物纤维表面原位氧化生成量;再用葡萄糖溶液辅助强化聚苯胺在植物纤维表面原位还原银氨离子生成钠米银,获得具有抗菌抗病毒性能的苍耳型植物纤维。通过本方法制备的仿生苍耳型抗菌抗病毒植物纤维,其对大肠杆菌、金黄色葡萄球菌和白色念珠菌的抑菌率大于99.9%,其对甲型H1N1流感病毒的抗病毒活性值(Mv)大于3.0。
-
公开(公告)号:CN114920907A
公开(公告)日:2022-08-19
申请号:CN202210536956.8
申请日:2022-05-17
Applicant: 福建农林大学
IPC: C08G61/02 , B01J20/26 , C02F1/28 , C02F101/36
Abstract: 本发明涉及环境材料领域,公开了一种氨基化多孔芳香骨架类化合物及其制备方法和应用,该氨基化多孔芳香骨架类化合物在刚性的疏水骨架上后修饰密集的氨基,从而制备出易被润湿的表面,利用骨架疏水作用和质子化氨基的静电作用协同吸附PFAS。其制备方法主要包括:2,5‑二溴苯基醛和端位炔基化合物在催化剂作用下进行碳‑碳偶联反应生成中间产物,中间产物经氨基后合成修饰得到氨基化多孔芳香骨架类化合物。该化合物提高了PFAS吸附选择性,能够高效吸附移除水中的全氟烷基化合物(如全氟烷基磺酸和全氟烷基羧酸),克服了现有技术中吸附剂存在吸附量不足、选择性低、动力学缓慢及难以再生等问题。
-
公开(公告)号:CN118943526A
公开(公告)日:2024-11-12
申请号:CN202411314902.2
申请日:2024-09-20
Applicant: 福建农林大学
Abstract: 本发明涉及电化学领域,公开了一种水系铁离子电解液及其应用和水系铁离子电池。所述电解液主要由无机亚铁盐,N,N‑二甲基甲酰胺和氯化镁制备得到,可用于制备无正极的水系铁离子电池。利用本发明的电解液制备的无正极水系铁离子电池,在2mA cm‑2下实现了1.07mAh cm‑2的高可逆比容量,具有优异的倍率性能和循环寿命,在10mA cm‑2下达到0.74mAh cm‑2,并在4mA cm‑2下循环1000次后保持97.5%的容量保持率。
-
公开(公告)号:CN115947877A
公开(公告)日:2023-04-11
申请号:CN202211665539.X
申请日:2022-12-23
Applicant: 福建农林大学
IPC: C08B37/08 , D06M15/03 , D06M13/207 , D06M11/70 , C07H13/12 , C07H1/00 , D21H21/36 , D06M101/06 , D06M101/04
Abstract: 本发明属于植物纤维改性技术领域,公开了一种胍化壳寡糖及其抗菌抗病毒植物纤维和制备方法。制备方法包括以下步骤:1)胍化壳寡糖的合成:双氰胺在三氟甲磺酸钪的催化作用下,与壳寡糖在中性水溶性中发生亲核加成反应,获得胍化壳寡糖;2)浸渍液配置3)二次浸渍法制备抗菌抗病毒胍化壳寡糖植物纤维。本发明中胍化壳寡糖的取代度更高,可以达到60.68%,比壳寡糖展现出更强抗菌活性,抗菌抗病毒胍化壳寡糖植物纤维壳寡糖固定量高达539.3mmol/g,对大肠杆菌、金黄色葡萄球菌的抑菌率高达100%,其对噬菌体MS2的抑制率高达99.48%。经过30次水洗后,抗菌抗病毒活性几乎没有下降。具备良好的抗氧化性能和力学性能等。
-
-
-
-
-
-
-
-
-