-
公开(公告)号:CN119992269A
公开(公告)日:2025-05-13
申请号:CN202510067194.5
申请日:2025-01-16
Applicant: 福州大学
IPC: G06V10/80 , G06V10/764 , G06V10/20 , G06V10/40 , G06V20/10
Abstract: 本发明提出一种基于Mamba结构的高光谱和LiDAR数据自适应融合协同分类方法。首先,利用双分支深度特性提取架构提取HSI数据的空间‑光谱联合特征以及LiDAR数据的高程语义信息。随后,通过空间上下文标记器进行特征聚合并优化空间表示。在特征融合阶段,通过基于Mamba结构的双通道协同注意力模块DCCAM来捕获全局依赖关系,同时利用参数共享确保异构特征的一致性,最后通过自适应融合模块AF有效地整合了多源特征,增强了信息的联合表示。相比已有的多模态遥感图像分类算法,本发明方法能够实现更高的分类精度并显著提升计算效率。