-
公开(公告)号:CN105825205A
公开(公告)日:2016-08-03
申请号:CN201610222169.0
申请日:2016-04-11
Applicant: 福州大学
CPC classification number: G06K9/00221 , G06K9/6227 , G06K9/6256 , G06K9/6276
Abstract: 本发明涉及一种协作稀疏表示自适应的快速人脸识别方法,包括不违反稀疏表示定义基本假设的局部稀疏表示分类器系统,如下:读入训练样本和测试样本的图像;对训练样本和测试样本进行初始化,使用双线性内插值将训练样本和测试样本缩放成固定尺寸的图像并整合成列向量并进行归一化处理;利用核诱导找出与测试样本最邻近的N*个训练样本,N*为最佳预测值;从N*个训练样本中挑出与测试样本相关的训练样本类来组成完备基;采用l2范数协作性求解稀疏系数并通过残差预测所述测试样本的类别。还包括能根据不同的训练样本库寻找到所述最佳预测值N*的系统。本发明解决了平衡识别率和计算速率的问题,同时使得整个识别系统能针对不同的训练库自动寻找一个合适的N值。
-
公开(公告)号:CN105825205B
公开(公告)日:2019-04-02
申请号:CN201610222169.0
申请日:2016-04-11
Applicant: 福州大学
Abstract: 本发明涉及一种协作稀疏表示自适应的快速人脸识别方法,包括不违反稀疏表示定义基本假设的局部稀疏表示分类器系统,如下:读入训练样本和测试样本的图像;对训练样本和测试样本进行初始化,使用双线性内插值将训练样本和测试样本缩放成固定尺寸的图像并整合成列向量并进行归一化处理;利用核诱导找出与测试样本最邻近的N*个训练样本,N*为最佳预测值;从N*个训练样本中挑出与测试样本相关的训练样本类来组成完备基;采用l2范数协作性求解稀疏系数并通过残差预测所述测试样本的类别。还包括能根据不同的训练样本库寻找到所述最佳预测值N*的系统。本发明解决了平衡识别率和计算速率的问题,同时使得整个识别系统能针对不同的训练库自动寻找一个合适的N值。
-