一种基于贪心策略的失踪目标搜索方法

    公开(公告)号:CN109521447B

    公开(公告)日:2022-10-14

    申请号:CN201811363492.5

    申请日:2018-11-16

    Applicant: 福州大学

    Abstract: 本发明涉及一种基于贪心策略的失踪目标搜索方法。将连续的历史GPS轨迹数据转变成离散的位置点序列,计算目标位置转移概率矩阵,而后评估出找到目标的单位搜索代价;根据转移概率矩阵和评估的搜索代价计算“代价时跨比”、“概率代价比”,基于贪心策略遍历代价时跨比、概率代价比确定搜索时刻、待搜索位置的序列;重复上述过程,直到搜索时刻为目标时刻,输出目标位置。本发明方法利用历史轨迹数据,估测搜索时刻评估指标——期望的代价时跨比,和搜索位置评估指标——期望的概率代价比,来启发式确定搜索时刻和搜索位置,有效地降低了找到目标指定时刻所在位置的搜索代价。

    基于强化学习算法的失踪目标搜索方法

    公开(公告)号:CN111061966B

    公开(公告)日:2022-08-05

    申请号:CN201911179955.7

    申请日:2019-11-27

    Applicant: 福州大学

    Abstract: 本发明提出一种基于强化学习算法的失踪目标搜索方法,包括如下步骤:步骤S1、数据预处理:包括时间和空间的离散化;目标移动轨迹的离散化;不同时间空间下搜索难度的标量化;步骤S2、强化学习训练环境构建:构建强化学习训练环境,训练环境信息包含不同时间不同位置出发的对象在不同搜索时刻下的期望搜索代价和不同搜索时刻转移到不同位置的概率;步骤S3、时空搜索模型离线训练:对状态和行为的定义以及模型进行自适应优化;步骤S4、在线时空搜索决策:基于步骤S3已经训练好的时空搜索模型迭代地采用贪婪策略确定时空搜索序列并执行时空搜索。其有效的降低了找到目标在目标时刻所在位置的搜索代价,完成搜索代价约束下的目标搜索任务。

    基于强化学习算法的失踪目标搜索方法

    公开(公告)号:CN111061966A

    公开(公告)日:2020-04-24

    申请号:CN201911179955.7

    申请日:2019-11-27

    Applicant: 福州大学

    Abstract: 本发明提出一种基于强化学习算法的失踪目标搜索方法,包括如下步骤:步骤S1、数据预处理:包括时间和空间的离散化;目标移动轨迹的离散化;不同时间空间下搜索难度的标量化;步骤S2、强化学习训练环境构建:构建强化学习训练环境,训练环境信息包含不同时间不同位置出发的对象在不同搜索时刻下的期望搜索代价和不同搜索时刻转移到不同位置的概率;步骤S3、时空搜索模型离线训练:对状态和行为的定义以及模型进行自适应优化;步骤S4、在线时空搜索决策:基于步骤S3已经训练好的时空搜索模型迭代地采用贪婪策略确定时空搜索序列并执行时空搜索。其有效的降低了找到目标在目标时刻所在位置的搜索代价,完成搜索代价约束下的目标搜索任务。

    一种基于贪心策略的失踪目标搜索方法

    公开(公告)号:CN109521447A

    公开(公告)日:2019-03-26

    申请号:CN201811363492.5

    申请日:2018-11-16

    Applicant: 福州大学

    Abstract: 本发明涉及一种基于贪心策略的失踪目标搜索方法。将连续的历史GPS轨迹数据转变成离散的位置点序列,计算目标位置转移概率矩阵,而后评估出找到目标的单位搜索代价;根据转移概率矩阵和评估的搜索代价计算“代价时跨比”、“概率代价比”,基于贪心策略遍历代价时跨比、概率代价比确定搜索时刻、待搜索位置的序列;重复上述过程,直到搜索时刻为目标时刻,输出目标位置。本发明方法利用历史轨迹数据,估测搜索时刻评估指标——期望的代价时跨比,和搜索位置评估指标——期望的概率代价比,来启发式确定搜索时刻和搜索位置,有效地降低了找到目标指定时刻所在位置的搜索代价。

Patent Agency Ranking