基于批流统一数据聚类的风电机组异常检测方法

    公开(公告)号:CN112651617B

    公开(公告)日:2022-07-01

    申请号:CN202011519463.0

    申请日:2020-12-21

    Applicant: 福州大学

    Abstract: 本发明涉及基于批流统一聚类模式的风电机组异常数据检测方法,将批量聚类和增量聚类结合。使用批量的聚类初始化方式,在首个时间窗口中初始化簇特征。后续窗口采用增量式的聚类方法,这样能够同时满足批量聚类的高精度以及流式聚类的低延迟等特点,可以持续处理大规模持续流入的风电机组群运行数据,并能较快地反映出异常数据所在设备。加入了基于流式迭代的簇特征更新机制。引入迭代流的思想,将风电机组数据簇特征创建成迭代流。进行流式的数据状态广播、双流连接计算,即将两个流式数据进行连接后计算。根据数据的最近簇进行分区,窗口定时更新每个分区的簇特征并将其返回到迭代流中。本发明保证了实时流处理低延迟的特性。

    基于批流统一数据聚类的风电机组异常检测方法

    公开(公告)号:CN112651617A

    公开(公告)日:2021-04-13

    申请号:CN202011519463.0

    申请日:2020-12-21

    Applicant: 福州大学

    Abstract: 本发明涉及基于批流统一聚类模式的风电机组异常数据检测方法,将批量聚类和增量聚类结合。使用批量的聚类初始化方式,在首个时间窗口中初始化簇特征。后续窗口采用增量式的聚类方法,这样能够同时满足批量聚类的高精度以及流式聚类的低延迟等特点,可以持续处理大规模持续流入的风电机组群运行数据,并能较快地反映出异常数据所在设备。加入了基于流式迭代的簇特征更新机制。引入迭代流的思想,将风电机组数据簇特征创建成迭代流。进行流式的数据状态广播、双流连接计算,即将两个流式数据进行连接后计算。根据数据的最近簇进行分区,窗口定时更新每个分区的簇特征并将其返回到迭代流中。本发明保证了实时流处理低延迟的特性。

Patent Agency Ranking