基于深度强化学习的边缘服务迁移方法

    公开(公告)号:CN118939400A

    公开(公告)日:2024-11-12

    申请号:CN202411005631.2

    申请日:2024-07-25

    Applicant: 福州大学

    Abstract: 本发明提出基于深度强化学习的边缘服务迁移方法,所述方法针对动态多变的边缘系统环境使用统一的服务迁移模型,将长期QoS作为优化目标,并使用迁移、通信和计算方面的延迟进行度量,同时基于深度强化学习DRL框架定义MEC环境下服务迁移问题的状态空间、动作空间和奖励函数,并将上述问题形式化表示为马尔科夫决策过程MDP,同时在基于深度强化学习的边缘服务迁移方法DPSM中采用深度确定性策略梯度训练深度神经网络,以在复杂动态的边缘环境中获取最优迁移策略;本发明用于探索边缘环境下的最优服务迁移策略,该方法通过直接输出迁移决策,以应对庞大的动作空间,并在各种场景下均展现出更加优越的性能。

Patent Agency Ranking