-
公开(公告)号:CN106815362A
公开(公告)日:2017-06-09
申请号:CN201710054383.4
申请日:2017-01-22
Applicant: 福州大学
IPC: G06F17/30
Abstract: 本发明提供一种基于KPCA多表索引的图像哈希检索方法,其包括以下步骤:区分性特征选取,特征聚类以及多表索引构建以及哈希编码的优化。本发明在训练哈希投影函数之前,首先,通过基于核函数的主元分析从图像特征维度中,选取具有区分能力的特征作为训练集,并在此基础上,利用特征聚类的方法获取不同语义样本的聚类中心,找出每类的多个最佳近邻类,最后对聚类空间进行层次划分,构造多个索引表。在检索时,通过查询多张哈希索引表以此提高检索的性能。本发明将高维的图像特征映射成简单的二值码,节省了数据的存储空间;解决采用单表索引结构时,相似图像之间的离散度相差较大,或者是相似特征属性分布区间较大,即原本是相似的特征,而被映射到不同哈希编码等问题。
-
公开(公告)号:CN106815362B
公开(公告)日:2019-12-31
申请号:CN201710054383.4
申请日:2017-01-22
Applicant: 福州大学
IPC: G06F16/583 , G06F16/51
Abstract: 本发明提供一种基于KPCA多表索引的图像哈希检索方法,其包括以下步骤:区分性特征选取,特征聚类以及多表索引构建以及哈希编码的优化。本发明在训练哈希投影函数之前,首先,通过基于核函数的主元分析从图像特征维度中,选取具有区分能力的特征作为训练集,并在此基础上,利用特征聚类的方法获取不同语义样本的聚类中心,找出每类的多个最佳近邻类,最后对聚类空间进行层次划分,构造多个索引表。在检索时,通过查询多张哈希索引表以此提高检索的性能。本发明将高维的图像特征映射成简单的二值码,节省了数据的存储空间;解决采用单表索引结构时,相似图像之间的离散度相差较大,或者是相似特征属性分布区间较大,即原本是相似的特征,而被映射到不同哈希编码等问题。
-