-
公开(公告)号:CN109635882A
公开(公告)日:2019-04-16
申请号:CN201910062293.9
申请日:2019-01-23
Applicant: 福州大学
CPC classification number: G06K9/629 , G06K9/6256 , G06N3/0454 , G06N3/0481
Abstract: 本发明涉及一种基于多尺度卷积特征提取和融合的显著物体检测方法,首先进行数据增强,同时对彩色图像以及对应的人工标注图进行处理,增加训练数据集的数据量;接着提取多尺度特征,并进行通道压缩来优化网络的计算效率;然后融合多尺度的特征,得到预测的显著图;最后通过求解最小化交叉熵损失,学习到模型的最优参数;最终利用训练好的模型网络来预测图像中的显著物体。本发明能显著提高显著物体检测精度。
-
公开(公告)号:CN108564528A
公开(公告)日:2018-09-21
申请号:CN201810342812.2
申请日:2018-04-17
Applicant: 福州大学
Abstract: 本发明涉及一种基于显著性检测的肖像照片自动背景虚化方法,包括以下步骤:1、利用线性谱聚类超像素分割算法将肖像图像分割为N个超像素,利用改进的显著优化算法计算出各超像素的显著值;2、利用大津法将显著值大于自适应阈值的超像素标记为前景区域,将显著值小于固定阈值的标记为背景区域,其余标记为未知区域,得到超像素尺度的标记三分图;3、利用超像素尺度的GrabCut算法,从标记三分图中分割得到人像区域边界;4、先利用快速引导滤波算法对背景区域进行模糊,再对前景区域根据显著检测结果有选择地进行细节增强,从而得到背景虚化效果。该方法能够仅依赖单张肖像图像快速地进行背景虚化,并提高背景虚化效果。
-
公开(公告)号:CN109635882B
公开(公告)日:2022-05-13
申请号:CN201910062293.9
申请日:2019-01-23
Applicant: 福州大学
IPC: G06V10/80 , G06V10/774 , G06V10/82 , G06K9/62 , G06N3/04
Abstract: 本发明涉及一种基于多尺度卷积特征提取和融合的显著物体检测方法,首先进行数据增强,同时对彩色图像以及对应的人工标注图进行处理,增加训练数据集的数据量;接着提取多尺度特征,并进行通道压缩来优化网络的计算效率;然后融合多尺度的特征,得到预测的显著图;最后通过求解最小化交叉熵损失,学习到模型的最优参数;最终利用训练好的模型网络来预测图像中的显著物体。本发明能显著提高显著物体检测精度。
-
公开(公告)号:CN108537816B
公开(公告)日:2021-08-31
申请号:CN201810342791.4
申请日:2018-04-17
Applicant: 福州大学
Abstract: 本发明涉及一种基于超像素和背景连接先验的显著物体分割方法,包括以下步骤:1、将输入图像分割为N个超像素,然后计算出每个超像素的显著值;2、通过背景连接先验在伪前景区域标记出前景超像素种子点和可能前景超像素种子点,在非伪前景区域中标记出背景超像素种子点和可能背景超像素种子点;3、利用四种超像素种子点和原图的所有超像素,求得原图中显著物体的超像素尺度分割结果;4、在包含显著物体的矩形区域中利用超像素尺度分割结果得到一个像素尺度的标记图,采用像素尺度GrabCut,计算得到显著物体分割结果。该方法能够快速、准确地利用显著图得出显著物体,为图像压缩、图像重定向、图像超分辨率提供快速有效的预处理结果。
-
公开(公告)号:CN108537816A
公开(公告)日:2018-09-14
申请号:CN201810342791.4
申请日:2018-04-17
Applicant: 福州大学
Abstract: 本发明涉及一种基于超像素和背景连接先验的显著物体分割方法,包括以下步骤:1、将输入图像分割为N个超像素,然后计算出每个超像素的显著值;2、通过背景连接先验在伪前景区域标记出前景超像素种子点和可能前景超像素种子点,在非伪前景区域中标记出背景超像素种子点和可能背景超像素种子点;3、利用四种超像素种子点和原图的所有超像素,求得原图中显著物体的超像素尺度分割结果;4、在包含显著物体的矩形区域中利用超像素尺度分割结果得到一个像素尺度的标记图,采用像素尺度GrabCut,计算得到显著物体分割结果。该方法能够快速、准确地利用显著图得出显著物体,为图像压缩、图像重定向、图像超分辨率提供快速有效的预处理结果。
-
-
-
-