-
公开(公告)号:CN115209122B
公开(公告)日:2023-07-07
申请号:CN202210887485.5
申请日:2022-07-26
Applicant: 福州大学
IPC: H04N13/106 , H04N13/111
Abstract: 本发明涉及一种基于多智能体的立体图像视觉舒适度增强方法及系统,该方法包括:对高质量立体图像对的左、右视图分别进行变换扰动,合成视觉不舒适的立体图像对,并将原始高质量立体图像对作为参考图像对;构建基于注意力机制的立体图像特征增强融合网络,该网络采用多阶段结构设计,在不同阶段增强融合左、右视图不同尺度的特征;构建双智能体的强化学习架构,分别用于预测左视图和右视图四个角的偏移量,进而计算得到变换矩阵,并将变换矩阵应用于左、右视图;利用合成的立体图像对和参考图像对双智能体进行训练;通过训练后的双智能体对待调整的立体图像对进行变换调整,以提高其视觉舒适度。该方法及系统能够显著增强立体图像的视觉舒适度。
-
公开(公告)号:CN112801909A
公开(公告)日:2021-05-14
申请号:CN202110162762.1
申请日:2021-02-05
Applicant: 福州大学
Abstract: 本发明涉及一种基于U‑Net和金字塔模块的图像融合去噪方法及系统,该方法包括以下步骤:S1、将成对的原始噪声图像和无噪声图像进行预处理,得到用于训练的成对图像块;S2、选取图像去噪深度网络模型FFDNet,并加载已训练完成的模型参数;步骤S3、构建基于U‑Net和金字塔模块的图像融合去噪网络;S4、以批次为单位将成对图像块输入FFDNet,并将其得到的结果输入图像融合去噪网络,根据损失函数训练图像融合去噪网络;S5、将用于测试的原始噪声图像输入FFDNet,并将其得到的结果输入训练好的图像融合去噪网络,得到最终的去噪图像。该方法及系统有利于提升去噪性能并保留更多的图像细节。
-
公开(公告)号:CN115209122A
公开(公告)日:2022-10-18
申请号:CN202210887485.5
申请日:2022-07-26
Applicant: 福州大学
IPC: H04N13/106 , H04N13/111
Abstract: 本发明涉及一种基于多智能体的立体图像视觉舒适度增强方法及系统,该方法包括:对高质量立体图像对的左、右视图分别进行变换扰动,合成视觉不舒适的立体图像对,并将原始高质量立体图像对作为参考图像对;构建基于注意力机制的立体图像特征增强融合网络,该网络采用多阶段结构设计,在不同阶段增强融合左、右视图不同尺度的特征;构建双智能体的强化学习架构,分别用于预测左视图和右视图四个角的偏移量,进而计算得到变换矩阵,并将变换矩阵应用于左、右视图;利用合成的立体图像对和参考图像对双智能体进行训练;通过训练后的双智能体对待调整的立体图像对进行变换调整,以提高其视觉舒适度。该方法及系统能够显著增强立体图像的视觉舒适度。
-
公开(公告)号:CN112801909B
公开(公告)日:2022-06-14
申请号:CN202110162762.1
申请日:2021-02-05
Applicant: 福州大学
Abstract: 本发明涉及一种基于U‑Net和金字塔模块的图像融合去噪方法及系统,该方法包括以下步骤:S1、将成对的原始噪声图像和无噪声图像进行预处理,得到用于训练的成对图像块;S2、选取图像去噪深度网络模型FFDNet,并加载已训练完成的模型参数;步骤S3、构建基于U‑Net和金字塔模块的图像融合去噪网络;S4、以批次为单位将成对图像块输入FFDNet,并将其得到的结果输入图像融合去噪网络,根据损失函数训练图像融合去噪网络;S5、将用于测试的原始噪声图像输入FFDNet,并将其得到的结果输入训练好的图像融合去噪网络,得到最终的去噪图像。该方法及系统有利于提升去噪性能并保留更多的图像细节。
-
-
-