自注意力特征融合的高分辨率遥感影像语义变化检测方法

    公开(公告)号:CN116486255A

    公开(公告)日:2023-07-25

    申请号:CN202310253842.7

    申请日:2023-03-16

    Applicant: 福州大学

    Abstract: 本发明涉及一种自注意力特征融合的高分辨率遥感影像语义变化检测方法。该方法结合深度学习技术构建一种针对高分辨率遥感影像土地利用/土地覆盖(LULC)的地物语义变化检测模型。模型对已完成预处理和裁剪的高分辨率遥感影像采用卷积神经网络CNN和Transformer组合编码层提取双时相高分辨率影像的深层特征,配合自注意力特征融合模块和多任务反卷积解码层进行LULC的变化区域检测和变化区域内前后时相的地物类型分类。本发明结合多任务学习思想,将变化区域检测和变化类型识别集成为一体,实现自动化的双时相高分辨率影像LULC语义变化检测。

    自注意力特征融合的高分辨率遥感影像语义变化检测方法

    公开(公告)号:CN116486255B

    公开(公告)日:2025-05-16

    申请号:CN202310253842.7

    申请日:2023-03-16

    Applicant: 福州大学

    Abstract: 本发明涉及一种自注意力特征融合的高分辨率遥感影像语义变化检测方法。该方法结合深度学习技术构建一种针对高分辨率遥感影像土地利用/土地覆盖(LULC)的地物语义变化检测模型。模型对已完成预处理和裁剪的高分辨率遥感影像采用卷积神经网络CNN和Transformer组合编码层提取双时相高分辨率影像的深层特征,配合自注意力特征融合模块和多任务反卷积解码层进行LULC的变化区域检测和变化区域内前后时相的地物类型分类。本发明结合多任务学习思想,将变化区域检测和变化类型识别集成为一体,实现自动化的双时相高分辨率影像LULC语义变化检测。

Patent Agency Ranking