一种基于时空约束的交通数据张量填充方法

    公开(公告)号:CN108804392A

    公开(公告)日:2018-11-13

    申请号:CN201810543422.1

    申请日:2018-05-30

    Applicant: 福州大学

    CPC classification number: G06F17/16 G06F17/14

    Abstract: 本发明涉及一种基于时空约束的交通数据张量填充方法,获取不完整的交通数据,建立交通流数据张量;建立基于因子分解的张量填充模型;通过分析数据时空特性,构建时空约束张量,对所述基于因子分解的张量填充模型进行优化;进行加入时空约束的张量填充,恢复出原始交通数据。本发明提出的一种基于时空约束的交通数据张量填充方法,将一种基于因子分解的张量填充方法应用于交通数据恢复领域,并充分挖掘交通数据的时空相关性和低秩特性,提高了恢复完整交通数据的精度。

    一种基于时空约束的交通数据张量填充方法

    公开(公告)号:CN108804392B

    公开(公告)日:2021-11-05

    申请号:CN201810543422.1

    申请日:2018-05-30

    Applicant: 福州大学

    Abstract: 本发明涉及一种基于时空约束的交通数据张量填充方法,获取不完整的交通数据,建立交通流数据张量;建立基于因子分解的张量填充模型;通过分析数据时空特性,构建时空约束张量,对所述基于因子分解的张量填充模型进行优化;进行加入时空约束的张量填充,恢复出原始交通数据。本发明提出的一种基于时空约束的交通数据张量填充方法,将一种基于因子分解的张量填充方法应用于交通数据恢复领域,并充分挖掘交通数据的时空相关性和低秩特性,提高了恢复完整交通数据的精度。

    一种基于张量填充的自适应群智感知系统数据收集方法

    公开(公告)号:CN108830930B

    公开(公告)日:2021-08-31

    申请号:CN201810646991.9

    申请日:2018-06-21

    Applicant: 福州大学

    Abstract: 本发明涉及一种基于张量填充的自适应群智感知系统数据收集方法,包括以下步骤:步骤S1:建立三维空气质量模型,并设定三阶空气质量数据张量;步骤S2:根据建立的三维空气质量模型,采用均匀管进行空气数据采样;步骤S3:将均匀管采样得到的空气数据,进行基于张量子空间的迭代侧切片处理,得到处理后的空气数据;步骤S4:根据处理后的空气数据,通过基于子空间的张量填充方法进行数据恢复,得到完整的空气质量数据。本发明解决了群智感知系统中感知成本过大的问题,能够通过较低的样本预算取得高质量的感知数据,即利用自适应采样策略,提高了三维空气质量数据的重建精度。

    一种基于生成式对抗网络的交通数据填充方法

    公开(公告)号:CN108805418B

    公开(公告)日:2021-08-31

    申请号:CN201810496222.5

    申请日:2018-05-22

    Applicant: 福州大学

    Abstract: 本发明涉及一种基于生成式对抗网络的交通数据填充方法,将3D卷积神经网络与生成式对抗网络相结合,构造一种3DConvGAN模型,首先利用历史数据训练3DConvGAN模型,并采用3D卷积神经网络对临近时刻的数据进行时空特征提取;其次设置衡量已知点的真实数据和生成数据之间的差异,通过最小化损失函数来获取生成网络的最优输入;最后,使用最优输入通过生成网络获取最优的生成数据,以实现交通数据的恢复。本发明克服了现有技术不能充分利用交通数据的历史信息与时空特征的不足,充分利用历史的交通数据并有效地提取交通数据的时空特性,从而提升了交通数据的恢复精确度。

    一种基于张量填充的自适应群智感知系统数据收集方法

    公开(公告)号:CN108830930A

    公开(公告)日:2018-11-16

    申请号:CN201810646991.9

    申请日:2018-06-21

    Applicant: 福州大学

    Abstract: 本发明涉及一种基于张量填充的自适应群智感知系统数据收集方法,包括以下步骤:步骤S1:建立三维空气质量模型,并设定三阶空气质量数据张量;步骤S2:根据建立的三维空气质量模型,采用均匀管进行空气数据采样;步骤S3:将均匀管采样得到的空气数据,进行基于张量子空间的迭代侧切片处理,得到处理后的空气数据;步骤S4:根据处理后的空气数据,通过基于子空间的张量填充方法进行数据恢复,得到完整的空气质量数据。本发明解决了群智感知系统中感知成本过大的问题,能够通过较低的样本预算取得高质量的感知数据,即利用自适应采样策略,提高了三维空气质量数据的重建精度。

    一种基于生成式对抗网络的交通数据填充方法

    公开(公告)号:CN108805418A

    公开(公告)日:2018-11-13

    申请号:CN201810496222.5

    申请日:2018-05-22

    Applicant: 福州大学

    CPC classification number: G06Q10/067

    Abstract: 本发明涉及一种基于生成式对抗网络的交通数据填充方法,将3D卷积神经网络与生成式对抗网络相结合,构造一种3DConvGAN模型,首先利用历史数据训练3DConvGAN模型,并采用3D卷积神经网络对临近时刻的数据进行时空特征提取;其次设置衡量已知点的真实数据和生成数据之间的差异,通过最小化损失函数来获取生成网络的最优输入;最后,使用最优输入通过生成网络获取最优的生成数据,以实现交通数据的恢复。本发明克服了现有技术不能充分利用交通数据的历史信息与时空特征的不足,充分利用历史的交通数据并有效地提取交通数据的时空特性,从而提升了交通数据的恢复精确度。

    一种基于张量填充的城市交通流预测方法

    公开(公告)号:CN107564288A

    公开(公告)日:2018-01-09

    申请号:CN201710934943.5

    申请日:2017-10-10

    Applicant: 福州大学

    Abstract: 本发明涉及一种基于张量填充的城市交通流预测方法,包括以下步骤:步骤S1:收集预测点所邻近的交通流状态数据;步骤S2:根据收集交通数据做初始填充;步骤S3:设计交通数据张量;步骤S4:根据设计的交通流数据张量基于张量分解动态填充进行动态填充预测。本发明提出的一种基于张量填充的城市交通流预测方法,克服了现有技术中在交通流数据源存在缺失下预测精度不佳的缺陷;构建交通流张量模型同时采用划分张量窗口动态填充的方式,提高了在交通流预测数据源存在缺失下的预测精度。

    一种基于张量填充的城市交通流预测方法

    公开(公告)号:CN107564288B

    公开(公告)日:2019-12-17

    申请号:CN201710934943.5

    申请日:2017-10-10

    Applicant: 福州大学

    Abstract: 本发明涉及一种基于张量填充的城市交通流预测方法,包括以下步骤:步骤S1:收集预测点所邻近的交通流状态数据;步骤S2:根据收集交通数据做初始填充;步骤S3:设计交通数据张量;步骤S4:根据设计的交通流数据张量基于张量分解动态填充进行动态填充预测。本发明提出的一种基于张量填充的城市交通流预测方法,克服了现有技术中在交通流数据源存在缺失下预测精度不佳的缺陷;构建交通流张量模型同时采用划分张量窗口动态填充的方式,提高了在交通流预测数据源存在缺失下的预测精度。

Patent Agency Ranking