-
公开(公告)号:CN116524207A
公开(公告)日:2023-08-01
申请号:CN202211575959.9
申请日:2022-12-08
Applicant: 福州大学
IPC: G06V10/46 , G06V10/44 , G06V10/774 , G06V10/80 , G06V10/82 , G06N3/045 , G06N3/0464 , G06N3/0895
Abstract: 本发明涉及一种基于边缘检测辅助的弱监督RGBD图像显著性检测方法,包括以下步骤:步骤S1:建立包含涂鸦标注图的弱监督RGBD图像显著性检测训练集,并进行数据增强;步骤S2:设计多层次、多任务的弱监督RGBD图像显著性检测网络;步骤S3:设计融合模块;步骤S4:设计基于边缘检测辅助的弱监督RGBD图像显著性检测网络,并设计损失函数优化网络参数;步骤S5:将待测RGBD图像输入训练好的基于边缘检测辅助的弱监督RGBD图像显著性检测模型中,得到显著性检测结果。应用本技术方案能够实现性能较好的弱监督RGBD图像显著性检测。
-
公开(公告)号:CN112884682A
公开(公告)日:2021-06-01
申请号:CN202110022806.0
申请日:2021-01-08
Applicant: 福州大学
Abstract: 本发明涉及一种基于匹配与融合的立体图像颜色校正方法及系统,该方法包括:S1、建立包括无失真立体图像和失真立体图像的训练集;S2、构建基于视差注意力的颜色校正初始模型及其损失函数,训练得到训练好的颜色校正初始模型,利用其对目标图像进行初步颜色校正得到初始校正图;S3、利用光流网络计算从初始校正图到参考图像的光流,并对参考图像进行图像变形和空洞填充得到匹配目标图;S4、构建基于U‑net模型架构的图像融合网络模型及其损失函数,训练得到训练好的图像融合网络模型;S5、利用步骤S2到S4训练好的模型对待校正的失真立体图像进行颜色校正。该方法及系统有利于快速高效地校正立体图像左右视图间的颜色差异。
-
公开(公告)号:CN112884682B
公开(公告)日:2023-02-21
申请号:CN202110022806.0
申请日:2021-01-08
Applicant: 福州大学
IPC: G06T5/50 , G06T5/00 , G06N3/0464 , G06N3/0455 , G06N3/048 , G06N3/084
Abstract: 本发明涉及一种基于匹配与融合的立体图像颜色校正方法及系统,该方法包括:S1、建立包括无失真立体图像和失真立体图像的训练集;S2、构建基于视差注意力的颜色校正初始模型及其损失函数,训练得到训练好的颜色校正初始模型,利用其对目标图像进行初步颜色校正得到初始校正图;S3、利用光流网络计算从初始校正图到参考图像的光流,并对参考图像进行图像变形和空洞填充得到匹配目标图;S4、构建基于U‑net模型架构的图像融合网络模型及其损失函数,训练得到训练好的图像融合网络模型;S5、利用步骤S2到S4训练好的模型对待校正的失真立体图像进行颜色校正。该方法及系统有利于快速高效地校正立体图像左右视图间的颜色差异。
-
-