基于前馈神经网络的生物组织内含异常组织特征预测方法

    公开(公告)号:CN115579048A

    公开(公告)日:2023-01-06

    申请号:CN202211382706.X

    申请日:2022-11-01

    Applicant: 福州大学

    Abstract: 本发明提出一种基于前馈神经网络的生物组织内含异常组织特征预测方法,引入了前馈神经网络技术,配合生物传热数学模型以及正常组织与异常组织产热不同建立模型等,通过对建模产生的数据用以训练前馈神经网络,使之达到最佳拟合状态,来提高对新数据的预测准确率。在此基础上,对数据进行扁平化处理,使得其中一个模型产生多个数据构成的矩阵成为一个向量,建立多个模型,得到一个含多个模型数据组成的数据集,同时增加异常组织在正常组织内的角度参数,提高对异常组织的状态预测。本发明可使给定比例椭球体异常组织大小和位置的预测准确率大于98%,并发现异常组织姿态角度准确程度的预测则与异常组织不规则程度显著相关,起到了辅助科研的作用。

Patent Agency Ranking