-
公开(公告)号:CN112631434B
公开(公告)日:2022-04-12
申请号:CN202110028453.5
申请日:2021-01-11
Applicant: 福州大学
Abstract: 本发明涉及一种基于深度学习的振动触觉编解码方法,具体包括以下步骤:将触觉信号不同维度数据进行联合编码,去除触觉数据三维空间上存在的冗余,同时对其进行预处理;利用门控循环单元网络GRU进行训练,每次均以两组数据输入,得到下一组数据的预测数据,并以下一组数据的真实值作为标签,将预测数据和真实数据进行比较计算残差对预测数据进行补偿,得到重构后的预测数据;将重构的预测数据与和前一组数据打包重新作为下一轮预测的输入数据。本发明较现有技术,在性能上有大幅度的提升。
-
公开(公告)号:CN112631434A
公开(公告)日:2021-04-09
申请号:CN202110028453.5
申请日:2021-01-11
Applicant: 福州大学
Abstract: 本发明涉及一种基于深度学习的振动触觉编解码方法,具体包括以下步骤:将触觉信号不同维度数据进行联合编码,去除触觉数据三维空间上存在的冗余,同时对其进行预处理;利用门控循环单元网络GRU进行训练,每次均以两组数据输入,得到下一组数据的预测数据,并以下一组数据的真实值作为标签,将预测数据和真实数据进行比较计算残差对预测数据进行补偿,得到重构后的预测数据;将重构的预测数据与和前一组数据打包重新作为下一轮预测的输入数据。本发明较现有技术,在性能上有大幅度的提升。
-