-
公开(公告)号:CN117874071A
公开(公告)日:2024-04-12
申请号:CN202311829394.7
申请日:2023-12-28
Applicant: 电子科技大学长三角研究院(衢州)
IPC: G06F16/2453 , G06N3/0442 , G06N3/0455 , G06N3/08 , G06F18/214
Abstract: 本发明公开了一种基于机器学习的数据库查询优化器代价模型,涉及数据库技术领域,该数据库查询优化器代价模型在跨越若干数据库的多个数据集上进行训练,其框架包括编码器模块、Tree‑LSTM模型和预测模块,其训练过程包括预训练阶段和微调阶段;预测模块基于残差连接构建,且包括五个线性层,其第一、四线性层组成适配器;在预训练阶段,提取节点特征,并对节点特征的算子类型、基数和代价进行编码,之后转换为向量;Tree‑LSTM模型将向量转化为隐藏状态;预测模块根据隐藏状态生成成本估算;在微调阶段,冻结预训练的Tree‑LSTM模型的参数,以及第二、三、五线性层,然后根据目标数据库的本地知识调整适配器的参数。本模型在面对不同数据库时能保持准确性并进行快速推理。