基于多尺度和全局上下文信息的医学图像分割方法和装置

    公开(公告)号:CN113920129B

    公开(公告)日:2025-04-08

    申请号:CN202111089546.5

    申请日:2021-09-16

    Abstract: 本发明涉及一种基于多尺度和全局上下文信息的医学图像分割方法和装置,该方法包括:获取待处理医学图像;提取待处理医学图像中的图像特征,得到特征图;学习特征图的多尺度的全局上下文信息;引导多尺度的全局上下文信息与译码器支路特征融合;根据预设尺度与权重的对应关系将与译码器支路特征融合后的多尺度的全局上下文信息组合,得到目标医学图像。本发明在一定程度上解决了相关技术的全卷积网络模型存在的感受野较小、模型深度较浅和编码解码过程信息损失大的问题。此外,本发明还在一定程度上解决了相关技术的全卷积网络模型由于在多尺度推理中使用平均池化策略组合多尺度结果的方法而存在的组合结果不准确的问题。

    基于多尺度和全局上下文信息的医学图像分割方法和装置

    公开(公告)号:CN113920129A

    公开(公告)日:2022-01-11

    申请号:CN202111089546.5

    申请日:2021-09-16

    Abstract: 本发明涉及一种基于多尺度和全局上下文信息的医学图像分割方法和装置,该方法包括:获取待处理医学图像;提取待处理医学图像中的图像特征,得到特征图;学习特征图的多尺度的全局上下文信息;引导多尺度的全局上下文信息与译码器支路特征融合;根据预设尺度与权重的对应关系将与译码器支路特征融合后的多尺度的全局上下文信息组合,得到目标医学图像。本发明在一定程度上解决了相关技术的全卷积网络模型存在的感受野较小、模型深度较浅和编码解码过程信息损失大的问题。此外,本发明还在一定程度上解决了相关技术的全卷积网络模型由于在多尺度推理中使用平均池化策略组合多尺度结果的方法而存在的组合结果不准确的问题。

Patent Agency Ranking