一种基于自适应时间戳与多尺度特征提取的轨迹预测方法

    公开(公告)号:CN112667763A

    公开(公告)日:2021-04-16

    申请号:CN202011594675.5

    申请日:2020-12-29

    Abstract: 本发明公开了一种基于自适应时间戳与多尺度特征提取的轨迹预测方法,包括以下步骤:S1:构建自适应轨迹切割时间戳;S2:根据时间戳,对用户轨迹进行切割,来拟合用户的运动模式;S3:对用户历史轨迹进行特征提取;S4:对特征向量进行归一化处理,统一多尺度特征量纲;S5:通过LSTM网络模型和分类器预测下一个POI。本发明通过结合历史轨迹数据的时间统计特性,自适应地为每一个用户定义个性化时间戳,关注不同用户运动模式之间的差异性;并结合时间序列特征提取方法多尺度对用户轨迹特征进行提取,解决了人为固定时间戳定义、轨迹特征单一性以及特征向量嵌入量纲不统一给用户轨迹预测带来的问题,提高了预测精度的效果。

    一种基于自适应时间戳与多尺度特征提取的轨迹预测方法

    公开(公告)号:CN112667763B

    公开(公告)日:2022-09-13

    申请号:CN202011594675.5

    申请日:2020-12-29

    Abstract: 本发明公开了一种基于自适应时间戳与多尺度特征提取的轨迹预测方法,包括以下步骤:S1:构建自适应轨迹切割时间戳;S2:根据时间戳,对用户轨迹进行切割,来拟合用户的运动模式;S3:对用户历史轨迹进行特征提取;S4:对特征向量进行归一化处理,统一多尺度特征量纲;S5:通过LSTM网络模型和分类器预测下一个POI。本发明通过结合历史轨迹数据的时间统计特性,自适应地为每一个用户定义个性化时间戳,关注不同用户运动模式之间的差异性;并结合时间序列特征提取方法多尺度对用户轨迹特征进行提取,解决了人为固定时间戳定义、轨迹特征单一性以及特征向量嵌入量纲不统一给用户轨迹预测带来的问题,提高了预测精度的效果。

    一种通过移动性上下文感知基于对抗的社交圈推理方法

    公开(公告)号:CN114880586A

    公开(公告)日:2022-08-09

    申请号:CN202210636801.1

    申请日:2022-06-07

    Abstract: 本发明公开了一种通过移动性上下文感知基于对抗的社交圈推理方法。其特征在于提出了一种新颖的端到端框架ASCI‑CAM(Adversity‑based Social Circles Inference via Context‑Aware Mobility),用于从用户的移动性数据推断用户的社会关系。ASCI‑CAM利用上下文图从用户签到行为中获取语义轨迹嵌入,以对抗学习的方式解决TSCI(Trajectory‑based social circle inference)问题,可以很好地解释人类移动模式,与以往方法相比,进一步提高社交圈推理模型的性能和可解释性。在真实公开数据集(Brightkite,Gowalla和Foursquare)上的大量实验评估证明了我们的方法取得的结果的优越性能和可解释性。

Patent Agency Ranking