一种基于动态贝叶斯网络的目标意图识别方法

    公开(公告)号:CN114997306B

    公开(公告)日:2024-12-17

    申请号:CN202210606262.7

    申请日:2022-05-31

    Abstract: 本发明公开了一种基于动态贝叶斯网络的目标意图识别方法,属于目标意图识别技术领域。本发明使用原始数据和评分搜索算法构建动态贝叶斯网络,在评分的过程中使用贝叶斯评分准则BIC和自适应的遗传算法,在反馈策略中使用了集成学习的思想完成边方向的修正。本发明能处理从复杂态势中获取的时序信息和不确定信息,同时引入反馈策略解决了在使用原始数据构建动态贝叶斯网络的过程中出现的会影响识别准确率的反边问题。本发明可用于对空中目标的意图识别处理,则对应的原始数据为目标的飞行状态数据。

    一种基于重建的中间域领域自适应方法

    公开(公告)号:CN114693972B

    公开(公告)日:2023-08-29

    申请号:CN202210324083.4

    申请日:2022-03-29

    Abstract: 本发明公开了一种基于重建的中间域领域自适应方法,属于计算机视觉、智能频谱数据分析等领域自适应技术领域,具体涉及一种基于重建的中间域领域自适应方法。本发明针对现有领域自适应方法领域特征对齐困难等不足之处,提出一种基于重建的中间域领域自适应方法,并且能够实现更好的分类性能。本发明使用重建的方法对源域数据和目标域数据的特征进行提取,这样提取到特征将包含更多的数据信息,具有更强的可辨别性。同时,针对实际场景中两域之间直接对域差异最小化实现困难的问题,本发明通过在中间域对两域特征进行对齐,从而达到减轻特征对齐难度的目的,最终实现目标域数据的有效分类。

    一种基于重建的中间域领域自适应方法

    公开(公告)号:CN114693972A

    公开(公告)日:2022-07-01

    申请号:CN202210324083.4

    申请日:2022-03-29

    Abstract: 本发明公开了一种基于重建的中间域领域自适应方法,属于计算机视觉、智能频谱数据分析等领域自适应技术领域,具体涉及一种基于重建的中间域领域自适应方法。本发明针对现有领域自适应方法领域特征对齐困难等不足之处,提出一种基于重建的中间域领域自适应方法,并且能够实现更好的分类性能。本发明使用重建的方法对源域数据和目标域数据的特征进行提取,这样提取到特征将包含更多的数据信息,具有更强的可辨别性。同时,针对实际场景中两域之间直接对域差异最小化实现困难的问题,本发明通过在中间域对两域特征进行对齐,从而达到减轻特征对齐难度的目的,最终实现目标域数据的有效分类。

    一种基于动态贝叶斯网络的目标意图识别方法

    公开(公告)号:CN114997306A

    公开(公告)日:2022-09-02

    申请号:CN202210606262.7

    申请日:2022-05-31

    Abstract: 本发明公开了一种基于动态贝叶斯网络的目标意图识别方法,属于目标意图识别技术领域。本发明使用原始数据和评分搜索算法构建动态贝叶斯网络,在评分的过程中使用贝叶斯评分准则BIC和自适应的遗传算法,在反馈策略中使用了集成学习的思想完成边方向的修正。本发明能处理从复杂态势中获取的时序信息和不确定信息,同时引入反馈策略解决了在使用原始数据构建动态贝叶斯网络的过程中出现的会影响识别准确率的反边问题。本发明可用于对空中目标的意图识别处理,则对应的原始数据为目标的飞行状态数据。

    一种基于两阶段检测模型的新型检测器方法

    公开(公告)号:CN116433895A

    公开(公告)日:2023-07-14

    申请号:CN202310407513.3

    申请日:2023-04-17

    Abstract: 本发明公开了一种基于两阶段检测模型的新型检测器方法。该发明在两阶段检测模型中有一定的通用性,改进后的检测模型也可以作为一个单独的检测框架使用。为了解决传统两阶段检测模型分类任务的后续通常会发生将新类目标分类为易于混淆的基类目标的问题,本发明在检测器中附加一个对比网络来了解类内的相似性和类间的差异性,通过对比对象编码,可以减少类之间的误差。该专利中以通过消融与对比实验对该算法的可行性与可用性进行验证,以此证明本发明提出的新型检测器的可行性与合理性。

    一种基于信息增强的稀疏知识图谱推理方法

    公开(公告)号:CN113051408B

    公开(公告)日:2023-02-14

    申请号:CN202110338086.9

    申请日:2021-03-30

    Abstract: 本发明提出了一种基于信息增强的稀疏知识图谱推理方法,该方法包括:对待补全的稀疏知识图谱进行加载,在确定头尾目标实体之后,利用实体链接算法和外接的知识库来引入额外的信息,以此来对稀疏知识图谱进行信息增强;利用实体链接算法和外接的知识库来引入额外的信息,利用图卷积神经网络来获取外部知识图谱中的信息特征,使用双注意力机制对待补全知识图谱中抽取到的特征信息和增强的特征性进行特征融合,在对融合之后的特征进行评分,将分值最高的候选结果作为最终结果进行输出。

Patent Agency Ranking