一种基于深度学习的含噪声标签图像的分类方法

    公开(公告)号:CN109034248B

    公开(公告)日:2022-04-05

    申请号:CN201810846627.7

    申请日:2018-07-27

    Abstract: 本发明公开一种基于深度学习的含噪声标签图像的分类方法,涉及图像分类技术领域,本发明的方法包括如下步骤:步骤1,对语义元数据集和图像数据集进行数据提纯得到baseline数据集;步骤2,基于baseline数据集训练baseline模型,通过训练好的baseline模型提取baseline数据集的特征信息;步骤3,通过层次聚类对特征信息进行聚类,得到新的数据类别;步骤4,基于新的数据类别对baseline数据集进行重新划分,得到分类数据集data;步骤5,最后基于data数据集使用short_inception网络训练出最终的分类模型;步骤6,根据最终的分类模型对含噪声标签图像进行分类。本发明解决了现有的含噪声标签图像的分类方法无法适用于大数据集的问题。

    一种基于深度学习的含噪声标签图像的分类方法

    公开(公告)号:CN109034248A

    公开(公告)日:2018-12-18

    申请号:CN201810846627.7

    申请日:2018-07-27

    CPC classification number: G06K9/627 G06K9/6221

    Abstract: 本发明公开一种基于深度学习的含噪声标签图像的分类方法,涉及图像分类技术领域,本发明的方法包括如下步骤:步骤1,对语义元数据集和图像数据集进行数据提纯得到baseline数据集;步骤2,基于baseline数据集训练baseline模型,通过训练好的baseline模型提取baseline数据集的特征信息;步骤3,通过层次聚类对特征信息进行聚类,得到新的数据类别;步骤4,基于新的数据类别对baseline数据集进行重新划分,得到分类数据集data;步骤5,最后基于data数据集使用short_inception网络训练出最终的分类模型;步骤6,根据最终的分类模型对含噪声标签图像进行分类。本发明解决了现有的含噪声标签图像的分类方法无法适用于大数据集的问题。

Patent Agency Ranking