-
公开(公告)号:CN113920067A
公开(公告)日:2022-01-11
申请号:CN202111122421.8
申请日:2021-09-24
Applicant: 电子科技大学
Abstract: 本发明涉及一种基于卷积神经网络的CT图像目标检测方法、装置及设备,属于图像目标检测技术领域,基于卷积神经网络的CT图像目标检测方法、装置及设备通过获取目标患者的CT图像;将CT图像输入至预设CT图像目标检测模型中,得到CT图像中的目标区域及目标区域的类别。通过预先设置CT图像目标检测模型,在CT图像目标检测模型中设置注意力机制模块,对特征图中的不同通道分配不同的权重,提取特征图中的有用新型,提升CT图像的目标检测成功率。
-
公开(公告)号:CN113920133A
公开(公告)日:2022-01-11
申请号:CN202111123890.1
申请日:2021-09-24
Applicant: 电子科技大学
Abstract: 本发明涉一种图像分割方法和装置,通过基于预设预处理算法对待分割图像进行增强得到增强图像;使用训练好的神经网络模型对增强图像进行分割,其中神经网络模型通过上采样获得增强图像的高分辨率信息并进行特征信息的提取,以得到详细的空间边界信息;神经网络模型通过对增强图像的图像信息的编码得到目标区域的位置信息;神经网络模型通过对详细的空间边界信息、目标区域的位置信息和跳跃连接所保留的原空间边界信息进行融合,以得到图像分割结果。单独的上采样链路去提取图像的高分辨率信息,能有效帮助网络对目标区域的边界实现精准预测。在对比度低且目标区域边界模糊这种困难的情况下实现对目标区域的较为准确的分割。
-