-
公开(公告)号:CN107576648A
公开(公告)日:2018-01-12
申请号:CN201710826102.2
申请日:2017-09-14
Applicant: 电子科技大学
IPC: G01N21/65
Abstract: 一种拉曼增强基底的制备方法,属于功能材料制备技术领域。包括以下步骤:1)将可溶性铜盐、还原剂和表面活性剂加入去离子水中,混合均匀,得到前驱体溶液;2)将金属片放入上步的前驱体溶液中,搅拌3~10h,混合均匀后,在80~120℃温度下反应1~6h;3)取出金属片,采用乙醇和去离子水清洗,干燥;即可得到所述拉曼增强基底。本发明方法得到的拉曼增强基底具有工艺简单,拉曼增强效果明显,化学稳定性好,成本低廉等优点,并且可以通过控制表面活性剂的浓度,实现根据实际应用需求制备相应的形貌进而得到具有不同拉曼增强效果的基底,可广泛应用于电化学、生物分析、传感、食品安全等领域。
-
公开(公告)号:CN107651656B
公开(公告)日:2020-01-14
申请号:CN201710831300.8
申请日:2017-09-15
Applicant: 电子科技大学
Abstract: 一种Ni2P4O12纳米颗粒材料及其制备方法,属于催化剂制备技术领域。本发明Ni2P4O12纳米颗粒材料具有多级纳米结构,5~10nm的纳米晶修饰于约100nm的网络状互联纳米颗粒上,这种结构为电解水中的氧析出反应提供了极大的活性位点,同时有利于水分子的吸附,理论研究证实暴露的纳米晶的晶面对水分子与氧中间体有很低吸附能。
-
公开(公告)号:CN107675206A
公开(公告)日:2018-02-09
申请号:CN201710831408.7
申请日:2017-09-15
Applicant: 电子科技大学
CPC classification number: Y02E60/366 , C25B11/04 , B01J27/1853 , B82Y30/00 , B82Y40/00 , C25B1/04 , C25B11/02
Abstract: 一种氮掺杂的偏磷酸镍纳米颗粒材料及其制备方法,属于催化剂制备技术领域。所述氮掺杂的偏磷酸镍(N-Ni2P4O12)纳米颗粒材料具有多级纳米结构,在~100nm的网络状互联的纳米颗粒表面分布着无数5~10nm的纳米晶,其中,氮的掺杂量为4%~8%。本发明提供的负载氮掺杂的偏磷酸镍纳米颗粒的电极在氧析出反应中表现出很好的催化活性,从电化学极化曲线可以看出负载氮掺杂的Ni2P4O12纳米颗粒的电极在析氧反应时仅需280mV就能驱动30mA cm-2的电流密度,同时拥有很好的催化稳定性。
-
公开(公告)号:CN107675206B
公开(公告)日:2019-04-05
申请号:CN201710831408.7
申请日:2017-09-15
Applicant: 电子科技大学
Abstract: 一种氮掺杂的偏磷酸镍纳米颗粒材料及其制备方法,属于催化剂制备技术领域。所述氮掺杂的偏磷酸镍(N‑Ni2P4O12)纳米颗粒材料具有多级纳米结构,在~100nm的网络状互联的纳米颗粒表面分布着无数5~10nm的纳米晶,其中,氮的掺杂量为4%~8%。本发明提供的负载氮掺杂的偏磷酸镍纳米颗粒的电极在氧析出反应中表现出很好的催化活性,从电化学极化曲线可以看出负载氮掺杂的Ni2P4O12纳米颗粒的电极在析氧反应时仅需280mV就能驱动30mA cm‑2的电流密度,同时拥有很好的催化稳定性。
-
公开(公告)号:CN107651656A
公开(公告)日:2018-02-02
申请号:CN201710831300.8
申请日:2017-09-15
Applicant: 电子科技大学
Abstract: 一种Ni2P4O12纳米颗粒材料及其制备方法,属于催化剂制备技术领域。本发明Ni2P4O12纳米颗粒材料具有多级纳米结构,5~10nm的纳米晶修饰于约100nm的网络状互联纳米颗粒上,这种结构为电解水中的氧析出反应提供了极大的活性位点,同时有利于水分子的吸附,理论研究证实暴露的纳米晶的晶面对水分子与氧中间体有很低吸附能。
-
公开(公告)号:CN107576648B
公开(公告)日:2020-07-21
申请号:CN201710826102.2
申请日:2017-09-14
Applicant: 电子科技大学
IPC: G01N21/65
Abstract: 一种拉曼增强基底的制备方法,属于功能材料制备技术领域。包括以下步骤:1)将可溶性铜盐、还原剂和表面活性剂加入去离子水中,混合均匀,得到前驱体溶液;2)将金属片放入上步的前驱体溶液中,搅拌3~10h,混合均匀后,在80~120℃温度下反应1~6h;3)取出金属片,采用乙醇和去离子水清洗,干燥;即可得到所述拉曼增强基底。本发明方法得到的拉曼增强基底具有工艺简单,拉曼增强效果明显,化学稳定性好,成本低廉等优点,并且可以通过控制表面活性剂的浓度,实现根据实际应用需求制备相应的形貌进而得到具有不同拉曼增强效果的基底,可广泛应用于电化学、生物分析、传感、食品安全等领域。
-
-
-
-
-