-
公开(公告)号:CN112214685A
公开(公告)日:2021-01-12
申请号:CN202011031287.6
申请日:2020-09-27
Applicant: 电子科技大学
IPC: G06F16/9536 , G06F16/9535 , G06F16/36
Abstract: 本发明公开一种基于知识图谱的个性化推荐方法,属于推荐技术领域。本发明为了解决协同过滤等传统推荐方式中存在的数据稀疏性和冷启动技术问题,其采用的方案为:构建知识图谱,利用知识图谱的实体之间的语义关联信息,挖掘知识网络中用户的喜好;实体链接,通过将用户点击实体映射到知识图谱,找到对应的实体,完成知识图谱与推荐系统的链接;基于知识图谱的语义关系信息以及用户历史喜好,利用图注意力模型将两种信息进行合并,从而产生推荐依据。本发明通过挖掘用户历史喜好利用丰富的知识关联信息,深度挖掘用户的喜好,极大地提高了推荐处理的尽精确度。同时,利用知识图谱隐含的丰富语义信息为推荐带来多样性,提升推荐的可解释性。
-
公开(公告)号:CN112214685B
公开(公告)日:2023-03-28
申请号:CN202011031287.6
申请日:2020-09-27
Applicant: 电子科技大学
IPC: G06F16/9536 , G06F16/9535 , G06F16/36
Abstract: 本发明公开一种基于知识图谱的个性化推荐方法,属于推荐技术领域。本发明为了解决协同过滤等传统推荐方式中存在的数据稀疏性和冷启动技术问题,其采用的方案为:构建知识图谱,利用知识图谱的实体之间的语义关联信息,挖掘知识网络中用户的喜好;实体链接,通过将用户点击实体映射到知识图谱,找到对应的实体,完成知识图谱与推荐系统的链接;基于知识图谱的语义关系信息以及用户历史喜好,利用图注意力模型将两种信息进行合并,从而产生推荐依据。本发明通过挖掘用户历史喜好利用丰富的知识关联信息,深度挖掘用户的喜好,极大地提高了推荐处理的尽精确度。同时,利用知识图谱隐含的丰富语义信息为推荐带来多样性,提升推荐的可解释性。
-