一种基于深度混合模型的行人运动模式识别方法

    公开(公告)号:CN110674875A

    公开(公告)日:2020-01-10

    申请号:CN201910910345.3

    申请日:2019-09-25

    Abstract: 本发明提供了一种基于深度混合模型的行人运动模式识别方法。利用智能手机中内置的加速度传感器、陀螺仪和磁力计采集四种手机放置位置、七种日常行人运动模式的数据;采用由卷积神经网络CNN自动提取特征,后经主成分分析法对提取的特征进行降维处理,并将处理后的结果输入至XGBoost学习模式进行识别的混合模型。本发明将CNN作为可以从输入中自动获取特征的可训练特征提取器,利用PCA将高维特征数据降维以减小计算量,将XGBoost作为网络顶层的识别器来输出结果,有效地保证了特征提取和分类的高可靠性。

Patent Agency Ranking