-
公开(公告)号:CN112633378B
公开(公告)日:2022-06-28
申请号:CN202011550220.3
申请日:2020-12-24
Applicant: 电子科技大学
IPC: G06T7/00 , G06V10/764 , G06V10/774 , G06V10/22 , G06V10/44 , G06K9/62 , G06V10/82 , G06N3/04
Abstract: 本发明提出了一种多模态影像胎儿胼胝体智能检测方法及系统,所述检测方法包括:对多模态切面医学影像进行胼胝体目标框标注和影像模态‑切面位信息标注,形成胼胝体目标检测数据集;对胼胝体目标检测数据集中的多模态切面医学影像进行预处理,对多模态切面医学影像的模态‑切面信息进行编码;建立包括特征提取网络模型和Transformer网络模型的胎儿胼胝体智能检测模型;对胎儿胼胝体智能检测模型进行训练,获得训练后的胎儿胼胝体智能检测模型;利用训练后的胎儿胼胝体智能检测模型对待检测的多模态切面医学影像进行胎儿胼胝体智能检测,获得胎儿胼胝体检测结果。本发明利用特征提取网络模型和Transformer网络模型实现多模态影像中胎儿胼胝体的准确定位。
-
公开(公告)号:CN112633378A
公开(公告)日:2021-04-09
申请号:CN202011550220.3
申请日:2020-12-24
Applicant: 电子科技大学
Abstract: 本发明提出了一种多模态影像胎儿胼胝体智能检测方法及系统,所述检测方法包括:对多模态切面医学影像进行胼胝体目标框标注和影像模态‑切面位信息标注,形成胼胝体目标检测数据集;对胼胝体目标检测数据集中的多模态切面医学影像进行预处理,对多模态切面医学影像的模态‑切面信息进行编码;建立包括特征提取网络模型和Transformer网络模型的胎儿胼胝体智能检测模型;对胎儿胼胝体智能检测模型进行训练,获得训练后的胎儿胼胝体智能检测模型;利用训练后的胎儿胼胝体智能检测模型对待检测的多模态切面医学影像进行胎儿胼胝体智能检测,获得胎儿胼胝体检测结果。本发明利用特征提取网络模型和Transformer网络模型实现多模态影像中胎儿胼胝体的准确定位。
-