一种基于作文扣题度的自动作文评分计算方法

    公开(公告)号:CN111581379B

    公开(公告)日:2022-03-25

    申请号:CN202010352090.6

    申请日:2020-04-28

    Abstract: 本发明公开了一种基于作文扣题度的自动作文评分计算方法,该方法包括S1:句子预处理和分布式表示;S2:图卷积神经网络构建;S3:图卷积神经网络训练;S4:多层感知机分类器训练预测。本发明应用在自动作文评分领域,实现对非扣题作文的检测和发现,作文参考范文和学生作答作文的文本匹配程度是作文评分的一个重要特征,通过一种新颖的方式构建了图神经网络,综合了各个句子的相似度计算作文扣题度。

    一种级联医学图像增强方法

    公开(公告)号:CN112767377A

    公开(公告)日:2021-05-07

    申请号:CN202110113305.3

    申请日:2021-01-27

    Abstract: 本发明公开了一种级联医学图像增强方法,包括以下步骤:清晰医学图像和随机噪声联合输入,用深度学习模型1处理联合输入的特征,得到带血污图像;用深度学习模型2处理生成的带血污的图像和纯血污原图像,判断两张图像是否相似;若不相似,则更新深度学习模型2的神经网络梯度;若相似则进入下一步;将带血污图像输入级联神经网络模型,输出最终清晰图像结果。本发明通过深度学习中的生成对抗网络来模拟生成血污图像,通过使用改进后的变分自编码网络来消除血污图像中的血污,解决了医学图像中血液污染影响视觉的问题,较好的模拟医学图像中的血污和消除医学图像中的血污,使医学图像的清晰度更高、信噪比峰值更大。

    一种基于作文扣题度的自动作文评分计算方法

    公开(公告)号:CN111581379A

    公开(公告)日:2020-08-25

    申请号:CN202010352090.6

    申请日:2020-04-28

    Abstract: 本发明公开了一种基于作文扣题度的自动作文评分计算方法,该方法包括S1:句子预处理和分布式表示;S2:图卷积神经网络构建;S3:图卷积神经网络训练;S4:多层感知机分类器训练预测。本发明应用在自动作文评分领域,实现对非扣题作文的检测和发现,作文参考范文和学生作答作文的文本匹配程度是作文评分的一个重要特征,通过一种新颖的方式构建了图神经网络,综合了各个句子的相似度计算作文扣题度。

    一种自监督的对话文本摘要方法及系统

    公开(公告)号:CN111639175B

    公开(公告)日:2023-05-02

    申请号:CN202010475376.3

    申请日:2020-05-29

    Abstract: 本发明公开了一种自监督的对话文本摘要方法及系统,方法包括:文本预处理,将文本字符序列转化为单词序列,并通过词嵌入模型将文本单词转化成语义向量编码;时序自监督编码,训练出将对话句子编码为语义向量的自监督编码模型;自监督分段,训练出将对话文本分割为若干段落的自监督分段模型;无监督主题聚类,将相同主题的段落聚到同一类别集合中;编解码生成式摘要,将主题段落编解码生成文本摘要。本发明还提供一种自监督的对话文本摘要系统。本方案利用自监督和无监督模型进行建模,结合了生成式模型的优点,经过分段和主题聚类处理后进行生成式摘要,对完备对话集进行编解码,获得了质量较好的摘要,克服了人工标注样本短缺的问题。

    一种级联医学图像增强方法

    公开(公告)号:CN112767377B

    公开(公告)日:2022-07-05

    申请号:CN202110113305.3

    申请日:2021-01-27

    Abstract: 本发明公开了一种级联医学图像增强方法,包括以下步骤:清晰医学图像和随机噪声联合输入,用深度学习模型1处理联合输入的特征,得到带血污图像;用深度学习模型2处理生成的带血污的图像和纯血污原图像,判断两张图像是否相似;若不相似,则更新深度学习模型2的神经网络梯度;若相似则进入下一步;将带血污图像输入级联神经网络模型,输出最终清晰图像结果。本发明通过深度学习中的生成对抗网络来模拟生成血污图像,通过使用改进后的变分自编码网络来消除血污图像中的血污,解决了医学图像中血液污染影响视觉的问题,较好的模拟医学图像中的血污和消除医学图像中的血污,使医学图像的清晰度更高、信噪比峰值更大。

    一种自监督的对话文本摘要方法及系统

    公开(公告)号:CN111639175A

    公开(公告)日:2020-09-08

    申请号:CN202010475376.3

    申请日:2020-05-29

    Abstract: 本发明公开了一种自监督的对话文本摘要方法及系统,方法包括:文本预处理,将文本字符序列转化为单词序列,并通过词嵌入模型将文本单词转化成语义向量编码;时序自监督编码,训练出将对话句子编码为语义向量的自监督编码模型;自监督分段,训练出将对话文本分割为若干段落的自监督分段模型;无监督主题聚类,将相同主题的段落聚到同一类别集合中;编解码生成式摘要,将主题段落编解码生成文本摘要。本发明还提供一种自监督的对话文本摘要系统。本方案利用自监督和无监督模型进行建模,结合了生成式模型的优点,经过分段和主题聚类处理后进行生成式摘要,对完备对话集进行编解码,获得了质量较好的摘要,克服了人工标注样本短缺的问题。

Patent Agency Ranking