长尾级联流行度预测模型、训练方法及预测方法

    公开(公告)号:CN113887806A

    公开(公告)日:2022-01-04

    申请号:CN202111169186.X

    申请日:2021-10-08

    Abstract: 本发明公开了一种长尾级联流行度预测模型、训练方法及预测方法,该长尾级联流行度预测模型包括骨干网络、以及位于骨干网络之后的回归器,回归器包括并行设置的原始回归器和子网络SUB;骨干网络和原始回归器构成长尾级联流行度预测模型的基线模型;骨干网络用于提取长尾级联的时间特征和空间特征;原始回归器用于得到该长尾级联流行度的原始预测值;述子网络SUB用于得到该长尾级联流行度的加权偏差;以该长尾级联流行度的原始预测值与加权偏差之和作为最终流行度预测值。本发明利用解耦的思想,整个模型训练分为两个阶段,首先利用不同的采样策略来提取骨干网络的特征表示,然后将骨干网络的参数固定住,再通过几种不同的方法微调回归器,该回归器结合了原始的预测值和由子网络SUB产生的加权偏差值,达到更准确预测流行度的目的。

    长尾级联流行度预测模型、训练方法及预测方法

    公开(公告)号:CN113887806B

    公开(公告)日:2023-04-07

    申请号:CN202111169186.X

    申请日:2021-10-08

    Abstract: 本发明公开了一种长尾级联流行度预测模型、训练方法及预测方法,该长尾级联流行度预测模型包括骨干网络、以及位于骨干网络之后的回归器,回归器包括并行设置的原始回归器和子网络SUB;骨干网络和原始回归器构成长尾级联流行度预测模型的基线模型;骨干网络用于提取长尾级联的时间特征和空间特征;原始回归器用于得到该长尾级联流行度的原始预测值;述子网络SUB用于得到该长尾级联流行度的加权偏差;以该长尾级联流行度的原始预测值与加权偏差之和作为最终流行度预测值。本发明利用解耦的思想,整个模型训练分为两个阶段,首先利用不同的采样策略来提取骨干网络的特征表示,然后将骨干网络的参数固定住,再通过几种不同的方法微调回归器,该回归器结合了原始的预测值和由子网络SUB产生的加权偏差值,达到更准确预测流行度的目的。

    一种基于自监督学习的社交网络用户轨迹分析方法

    公开(公告)号:CN113378074A

    公开(公告)日:2021-09-10

    申请号:CN202110649825.6

    申请日:2021-06-10

    Abstract: 本发明公开了一种基于自监督学习的社交网络用户轨迹分析方法,通过数据增强技术对轨迹数据进行数据的合理扩充,再结合自监督的方法更好的学习轨迹数据的表示。然后构建一个预训练模型(该模型中包含了RNN和注意力机制等深度学习神经网络层),在预训练模型中利用对比学习构建正负样本,学习锚数据与正负样本之间的互信息。然后,将预训练模型中学习到的参数迁移到下游任务中,微调网络使下游任务的性能能够得到提升。本发明的目的旨在针对社交网络中用户轨迹分析研究中存在轨迹点稀疏、数据反馈存在差异、下一个轨迹点信号弱等问题,提供一种以自监督学习为框架并结合数据增强的方法,来学习人类的移动模式,使更流畅和完整地捕捉用户的运动意图。

Patent Agency Ranking