-
公开(公告)号:CN110309792B
公开(公告)日:2022-07-01
申请号:CN201910599633.1
申请日:2019-07-04
Applicant: 电子科技大学
Abstract: 本发明公开了基于部件模板的室内人物检测方法,属于目标检测领域和深度学习领域,首先收集数据集,再对数据集进行特征提取和构建特征金字塔,基于部件模板的子区域得到每个候选框的前景置信分数,并通过池化和全连接层得到定位框位置,完成检测模型的搭建;然后根据数据集的图片采用Xavier方法对检测模型进行初始化,基于检测模型的损失函数进行迭代到预设迭代次数,完成检测模型的训练,最后使用新的图片进行推理测试,得到检测结果。本发明解决了目前通用的目标检测方法在对室内场景的人物检测方面定位和识别的准确率较低的问题。
-
公开(公告)号:CN110930409B
公开(公告)日:2022-10-14
申请号:CN201910998936.0
申请日:2019-10-18
Applicant: 电子科技大学
Abstract: 本发明公开了一种基于深度学习的盐体语义分割方法及语义分割模型,采用预处理模型做基础模型进行特征提取,得到的特征图经过分类监督模块预测图片有盐与否作为辅助监督加速收敛,同时监督盐体分割分支模块输出的含盐图片分割结果和整体分割分支模块输出的所有图片分割结果,边缘预测模块输出边缘预测结果,组成混合损失有效提高盐体分割精度,最终得到较好的语义分割结果。语义分割模型中每级上采样的特征图经过特征融合模块,将每级上采样的特征图与上一级上采样特征图级联,这样逐级加强特征通道信息的密集获取,更好的利用每级上采样的特征图信息,更好的融合高层的语义信息和底层的空间信息。
-
公开(公告)号:CN110930409A
公开(公告)日:2020-03-27
申请号:CN201910998936.0
申请日:2019-10-18
Applicant: 电子科技大学
Abstract: 本发明公开了一种基于深度学习的盐体语义分割方法及语义分割模型,采用预处理模型做基础模型进行特征提取,得到的特征图经过分类监督模块预测图片有盐与否作为辅助监督加速收敛,同时监督盐体分割分支模块输出的含盐图片分割结果和整体分割分支模块输出的所有图片分割结果,边缘预测模块输出边缘预测结果,组成混合损失有效提高盐体分割精度,最终得到较好的语义分割结果。语义分割模型中每级上采样的特征图经过特征融合模块,将每级上采样的特征图与上一级上采样特征图级联,这样逐级加强特征通道信息的密集获取,更好的利用每级上采样的特征图信息,更好的融合高层的语义信息和底层的空间信息。
-
公开(公告)号:CN110309792A
公开(公告)日:2019-10-08
申请号:CN201910599633.1
申请日:2019-07-04
Applicant: 电子科技大学
Abstract: 本发明公开了基于部件模板的室内人物检测方法,属于目标检测领域和深度学习领域,首先收集数据集,再对数据集进行特征提取和构建特征金字塔,基于部件模板的子区域得到每个候选框的前景置信分数,并通过池化和全连接层得到定位框位置,完成检测模型的搭建;然后根据数据集的图片采用Xavier方法对检测模型进行初始化,基于检测模型的损失函数进行迭代到预设迭代次数,完成检测模型的训练,最后使用新的图片进行推理测试,得到检测结果。本发明解决了目前通用的目标检测方法在对室内场景的人物检测方面定位和识别的准确率较低的问题。
-
-
-